Afterpotentials in dronefly retinula cells
Date
1977-01
Authors
Tsukahara, Y.
Horridge, George Adrian
Stavenga, D. G.
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Verlag (Germany)
Abstract
The wavelength dependence of the afterpotentials following a bright illumination was studied in single photoreceptor cells of the droneflyEristalis. Cells with only a spectral sensitivity peak in the blue were selected. As previously demonstrated, these cells contain a rhodopsin absorbing maximally at about 450–460 nm, which upon photoconversion transforms into a metarhodopsin absorbing maximally at about 550 nm (Tsukahara and Horridge, 1977).
With the visual pigment initially all in the rhodopsin form, a high rate of visual pigment conversion results in an afterhyperpolarization (AHP) when the fraction of metarhodopsin remains negligible after illumination as occurs at longer wavelengths if the intensity is high. Intensive illumination at short wavelengths is followed by a prolonged depolarizing afterpotential (PDA). The magnitude of the PDA peaks at low intensities at about 450–460 nm, corresponding to the peak of the cell's spectral sensitivity (i.e. the rhodopsin peak). With increasing intensity of illumination, however, the peak shifts progressively towards 430 nm, which corresponds to the photoequilibrium with maximum metarhodopsin that can be established by monochromatic light. From this result, it is inferred that the PDA is related to the induced fall in the rhodopsin fraction. The PDA can be abolished, or knocked down, by a long-wavelength flash which reconverts remaining metarhodopsin into rhodopsin. Therefore the decline of the PDA is restrained by the existing amount of metarhodopsin. Possible theories of afterpotentials are discussed.
Description
Keywords
Short Wavelength, Long Wavelength, Spectral Sensitivity, Photoreceptor Cell, Visual Pigment
Citation
Collections
Source
Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology
Type
Journal article
Book Title
Entity type
Access Statement
License Rights
Restricted until
2037-12-31