Afterpotentials in dronefly retinula cells
dc.contributor.author | Tsukahara, Y. | |
dc.contributor.author | Horridge, George Adrian | |
dc.contributor.author | Stavenga, D. G. | |
dc.date.accessioned | 2019-08-14T02:55:22Z | |
dc.date.issued | 1977-01 | |
dc.description.abstract | The wavelength dependence of the afterpotentials following a bright illumination was studied in single photoreceptor cells of the droneflyEristalis. Cells with only a spectral sensitivity peak in the blue were selected. As previously demonstrated, these cells contain a rhodopsin absorbing maximally at about 450–460 nm, which upon photoconversion transforms into a metarhodopsin absorbing maximally at about 550 nm (Tsukahara and Horridge, 1977). With the visual pigment initially all in the rhodopsin form, a high rate of visual pigment conversion results in an afterhyperpolarization (AHP) when the fraction of metarhodopsin remains negligible after illumination as occurs at longer wavelengths if the intensity is high. Intensive illumination at short wavelengths is followed by a prolonged depolarizing afterpotential (PDA). The magnitude of the PDA peaks at low intensities at about 450–460 nm, corresponding to the peak of the cell's spectral sensitivity (i.e. the rhodopsin peak). With increasing intensity of illumination, however, the peak shifts progressively towards 430 nm, which corresponds to the photoequilibrium with maximum metarhodopsin that can be established by monochromatic light. From this result, it is inferred that the PDA is related to the induced fall in the rhodopsin fraction. The PDA can be abolished, or knocked down, by a long-wavelength flash which reconverts remaining metarhodopsin into rhodopsin. Therefore the decline of the PDA is restrained by the existing amount of metarhodopsin. Possible theories of afterpotentials are discussed. | en_AU |
dc.format.extent | 14 pages | en_AU |
dc.format.mimetype | application/pdf | |
dc.identifier.issn | 0340-7594 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/165040 | |
dc.language.iso | en_AU | |
dc.publisher | Springer Verlag (Germany) | en_AU |
dc.rights | © by Springer-Verlag 1977 | en_AU |
dc.source | Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology | en_AU |
dc.subject | Short Wavelength | en_AU |
dc.subject | Long Wavelength | en_AU |
dc.subject | Spectral Sensitivity | en_AU |
dc.subject | Photoreceptor Cell | en_AU |
dc.subject | Visual Pigment | en_AU |
dc.title | Afterpotentials in dronefly retinula cells | en_AU |
dc.type | Journal article | en_AU |
local.bibliographicCitation.issue | 3 | en_AU |
local.bibliographicCitation.lastpage | 266 | en_AU |
local.bibliographicCitation.startpage | 253 | en_AU |
local.contributor.affiliation | Horridge, George Adrian, Division of Biomedical Science and Biochemistry, CoS Research School of Biology, The Australian National University | en_AU |
local.contributor.authoremail | u690072@anu.edu.au | en_AU |
local.contributor.authoruid | Horridge, George Adrian, u690072 | en_AU |
local.description.embargo | 2037-12-31 | |
local.identifier.citationvolume | 114 | en_AU |
local.identifier.doi | 10.1007/BF00657322 | en_AU |
local.identifier.essn | 1432-1351 | en_AU |
local.identifier.uidSubmittedBy | u4579722 | en_AU |
local.publisher.url | https://link.springer.com/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 01 Tsukahara Y et al Afterpotentials in dronefly 1977.pdf
- Size:
- 823.3 KB
- Format:
- Adobe Portable Document Format
- Description: