Consensus Mutagenesis and Ancestral Reconstruction Provide Insight into the Substrate Specificity and Evolution of the Front-End 6-Desaturase Family

Date

2020

Authors

Li, Dongdi
Damry, Adam
Petrie, James
Vanhercke, Thomas
Singh, Surinder
Jackson, Colin

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Marine algae are a major source of ω-3 long-chain polyunsaturated fatty acids (ω3-LCPUFAs), which are conditionally essential nutrients in humans and a target for industrial production. The biosynthesis of these molecules in marine algae requires the desaturation of fatty acids by Δ6-desaturases, and enzymes from different species display a range of specificities toward ω3- and ω6-LCPUFA precursors. In the absence of a molecular structure, the structural basis for the variable substrate specificity of Δ6-desaturases is poorly understood. Here we have conducted a consensus mutagenesis and ancestral protein reconstruction-based analysis of the Δ6-desaturase family, focusing on the ω3-specific Δ6-desaturase from Micromonas pusilla (MpΔ6des) and the bispecific (ω3/ω6) Δ6-desaturase from Ostreococcus tauri (OtΔ6des). Our characterization of consensus amino acid substitutions in MpΔ6des revealed that residues in diverse regions of the protein, such as the N-terminal cytochrome b5 domain, can make important contributions to determining substrate specificity. Ancestral protein reconstruction also suggests that some extant Δ6-desaturases, such as OtΔ6des, could have adapted to different environmental conditions by losing specificity for ω3-LCPUFAs. This data set provides a map of regions within Δ6-desaturases that contribute to substrate specificity and could facilitate future attempts to engineer these proteins for use in biotechnology

Description

Keywords

Citation

Source

Biochemistry

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31