Modelling animal social networks: New solutions and future directions
dc.contributor.author | Farine, Damien | |
dc.date.accessioned | 2024-08-27T23:26:34Z | |
dc.date.available | 2024-08-27T23:26:34Z | |
dc.date.issued | 2024 | |
dc.date.updated | 2024-04-28T08:15:51Z | |
dc.description.abstract | Research Highlight: Ross, C. T., McElreath, R., & Redhead, D. (2023). Modelling ani-mal network data in R using STRAND. Journal of Animal Ecology. https://doi. org/10.1111/1365-2656.14021. One of the most important insights in ecology over the pastdecade has been that the social connections among animals affect a wide range ofecological and evolutionary processes. However, despite over 20 years of study efforton this topic, generating knowledge from data on social associations and interactionsremains fraught with problems. Redhead et al. present an R package—STRAND—thatextends the current animal social network analysis toolbox in two ways. First, theyprovide a simple R interfaces to implement generative network models, which arean alternative to regression approaches that draw inference by simulating the data-generating process. Second, they implement these models in a Bayesian framework,allowing uncertainty in the observation process to be carried through to hypothesistesting. STRAND therefore fills an important gap for hypothesis testing using net-work data. However, major challenges remain, and while STRAND represents an im-portant advance, generating robust results continues to require careful study design,considerations in terms of statistical methods and a plurality of approaches. | |
dc.description.sponsorship | Schweizerischer National fonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: PCEFP3_187058; H2020 EuropeanResearch Council, Grant/Award Number:850859 | |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.issn | 0021-8790 | |
dc.identifier.uri | https://hdl.handle.net/1885/733716007 | |
dc.language.iso | en_AU | en_AU |
dc.publisher | British Ecological Society | |
dc.rights | © 2024 The Authors. Journal of Animal Ecology © 2024 British Ecological Society. | |
dc.source | Journal of Animal Ecology | |
dc.subject | animal social network analysis | |
dc.subject | Bayesian statistics | |
dc.subject | generative network models | |
dc.subject | social behaviour | |
dc.title | Modelling animal social networks: New solutions and future directions | |
dc.type | Journal article | |
local.bibliographicCitation.issue | 3 | |
local.bibliographicCitation.lastpage | 253 | |
local.bibliographicCitation.startpage | 250 | |
local.contributor.affiliation | Farine, Damien, College of Science, ANU | |
local.contributor.authoremail | u4800064@anu.edu.au | |
local.contributor.authoruid | Farine, Damien, u4800064 | |
local.description.embargo | 2099-12-31 | |
local.description.notes | Imported from ARIES | |
local.identifier.absfor | 310400 - Evolutionary biology | |
local.identifier.ariespublication | a383154xPUB46584 | |
local.identifier.citationvolume | 93 | |
local.identifier.doi | 10.1111/1365-2656.14049 | |
local.identifier.scopusID | 2-s2.0-85182455341 | |
local.identifier.uidSubmittedBy | a383154 | |
local.type.status | Published Version |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Journal of Animal Ecology - 2024 - Farine - Modelling animal social networks New solutions and future directions.pdf
- Size:
- 184.98 KB
- Format:
- Adobe Portable Document Format