High temperature stability of natural maghmite: a magnetic and spectroscopic study

dc.contributor.authorGehring, A.U.
dc.contributor.authorFischer, H.
dc.contributor.authorLouvel, Marion
dc.contributor.authorKunze, K
dc.contributor.authorWeidler, P.G.
dc.date.accessioned2015-12-10T22:26:08Z
dc.date.issued2009
dc.date.updated2015-12-09T09:30:10Z
dc.description.abstractA combined magneto-mineralogical approach is used to diagnose maghemitization in magnetic grains of basaltic rock fragments from sand dunes in the Namibian desert in SW Africa. Data were obtained from static magnetic analysis, ferromagnetic resonance (FMR) spectroscopy, micro-Raman spectroscopy and electron microscopy. Micro-Raman spectroscopy showed that the magnetic grains in the lithic fragments form oxidative solid solution series with magnetite and maghemite as end-members. The five active Raman modes at 712, 665, 507, 380 and 344 cm-1 indicate that maghemite in the magnetic grains has well-defined structural properties. The FMR spectral analysis provides evidence for long-range dipolar coupling, which suggests intergrowth of the magnetic phases of the oxidative solid solution series. Thermomagnetic experiments and hysteresis measurements reveal a Curie temperature of about 890 K for this maghemite. Upon heating to 970 K part of the maghemite is altered to thermodynamically more stable hematite. After selective thermal decomposition of the maghemite in a protected atmosphere, the remaining magnetic phase has a Curie temperature of 850 K, characteristic for magnetite. The unique thermal stability of this natural maghemite above its Curie temperature is explained by the well-defined mineral structure, which formed during slow oxidative alteration of magnetite under arid climate conditions.
dc.identifier.issn0956-540X
dc.identifier.urihttp://hdl.handle.net/1885/53788
dc.publisherBlackwell Publishing Ltd
dc.sourceGeophysical Journal International
dc.titleHigh temperature stability of natural maghmite: a magnetic and spectroscopic study
dc.typeJournal article
local.bibliographicCitation.issue3
local.bibliographicCitation.lastpage1371
local.bibliographicCitation.startpage1361
local.contributor.affiliationGehring, A.U., ETH Zurich
local.contributor.affiliationFischer, H., ETH Zurich
local.contributor.affiliationLouvel, Marion, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationKunze, K, Swiss Federal Institute of Technology (ETH)
local.contributor.affiliationWeidler, P.G., Forschungszentrum Karlsruhe
local.contributor.authoremailu5453927@anu.edu.au
local.contributor.authoruidLouvel, Marion, u5453927
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.identifier.absfor040306 - Mineralogy and Crystallography
local.identifier.absfor040606 - Quaternary Environments
local.identifier.absseo970104 - Expanding Knowledge in the Earth Sciences
local.identifier.ariespublicationu4027924xPUB283
local.identifier.citationvolume179
local.identifier.doi10.1111/j.1365-246X.2009.04348.x
local.identifier.scopusID2-s2.0-70450203552
local.identifier.uidSubmittedByu4027924
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Gehring_High_temperature_stability_of_2009.pdf
Size:
998.94 KB
Format:
Adobe Portable Document Format