ANU Open Research Repository has been upgraded. We are still working on a few minor issues, which may result in short outages throughout the day. Please get in touch with repository.admin@anu.edu.au if you experience any issues.
 

Robust Lasso Regression Using Tukey's Biweight Criterion

Date

2017

Authors

Chang, Le
Roberts, Steven
Welsh, Alan

Journal Title

Journal ISSN

Volume Title

Publisher

American Statistical Association

Abstract

The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using Tukey's biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online.

Description

Keywords

Citation

Source

Technometrics

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

DOI

10.1080/00401706.2017.1305299

Restricted until