Advanced Diagnostics for the Study of Linearly Polarized Emission. II. Application to Diffuse Interstellar Radio Synchrotron Emission

dc.contributor.authorHerron, C. A.
dc.contributor.authorBurkhart, Blakesley
dc.contributor.authorGaensler, B. M.
dc.contributor.authorLewis, Geraint Francis
dc.contributor.authorMcClure-Griffiths, Naomi
dc.contributor.authorBernardi, Gianni
dc.contributor.authorCarretti, Ettore
dc.contributor.authorHaverkorn, M.
dc.contributor.authorKesteven, M. J.
dc.contributor.authorPoppi, Sergio
dc.contributor.authorStaveley-Smith, Lister
dc.date.accessioned2021-04-22T23:51:18Z
dc.date.issued2018-03-05
dc.date.updated2020-11-23T11:31:46Z
dc.description.abstractDiagnostics of polarized emission provide us with valuable information on the Galactic magnetic field and the state of turbulence in the interstellar medium, which cannot be obtained from synchrotron intensity alone. In Paper I, we derived polarization diagnostics that are rotationally and translationally invariant in the Q-U plane, similar to the polarization gradient. In this paper, we apply these diagnostics to simulations of ideal magnetohydrodynamic turbulence that have a range of sonic and Alfvénic Mach numbers. We generate synthetic images of Stokes Q and U for these simulations for the cases where the turbulence is illuminated from behind by uniform polarized emission and where the polarized emission originates from within the turbulent volume. From these simulated images, we calculate the polarization diagnostics derived in Paper I for different lines of sight relative to the mean magnetic field and for a range of frequencies. For all of our simulations, we find that the polarization gradient is very similar to the generalized polarization gradient and that both trace spatial variations in the magnetoionic medium for the case where emission originates within the turbulent volume, provided that the medium is not supersonic. We propose a method for distinguishing the cases of emission coming from behind or within a turbulent, Faraday rotating medium and a method to partly map the rotation measure of the observed region. We also speculate on statistics of these diagnostics that may allow us to constrain the physical properties of an observed turbulent region.en_AU
dc.description.sponsorshipC.A.H. acknowledges financial support received via an Australian Postgraduate Award and a Vice Chancellor’s Research Scholarship awarded by the University of Sydney. B.B. is supported by the NASA Einstein Postdoctoral Fellowship. B.M.G. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through grant RGPIN-2015-05948 and a Canada Research Chair. N.M.M.-G. acknowledges the support of the Australian Research Council through grant FT150100024. The Dunlap Institute for Astronomy and Astrophysics is funded through an endowment established by the David Dunlap family and the University of Toronto.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0004-637Xen_AU
dc.identifier.urihttp://hdl.handle.net/1885/230958
dc.language.isoen_AUen_AU
dc.publisherIOP Publishingen_AU
dc.relationhttp://purl.org/au-research/grants/arc/FT150100024en_AU
dc.rights© 2018 The American Astronomical Societyen_AU
dc.sourceThe Astrophysical Journalen_AU
dc.subjectISM: magnetic fieldsen_AU
dc.subjectISM: structureen_AU
dc.subjectmagnetohydrodynamics (MHD)en_AU
dc.subjectpolarizationen_AU
dc.subjecttechniques: polarimetricen_AU
dc.titleAdvanced Diagnostics for the Study of Linearly Polarized Emission. II. Application to Diffuse Interstellar Radio Synchrotron Emissionen_AU
dc.typeJournal articleen_AU
dcterms.dateAccepted2018-02-13
local.bibliographicCitation.issue29en_AU
local.bibliographicCitation.lastpage33en_AU
local.bibliographicCitation.startpage1en_AU
local.contributor.affiliationHerron, C. A., University of Sydneyen_AU
local.contributor.affiliationBurkhart, Blakesley, Harvard-Smithsonian Center for Astrophysicsen_AU
local.contributor.affiliationGaensler, B. M., University of Sydneyen_AU
local.contributor.affiliationLewis, Geraint Francis, University of Sydneyen_AU
local.contributor.affiliationMcClure-Griffiths, Naomi, College of Science, ANUen_AU
local.contributor.affiliationBernardi, Gianni, Rhodes Universityen_AU
local.contributor.affiliationCarretti, Ettore, INAFen_AU
local.contributor.affiliationHaverkorn, M., Radboud Universityen_AU
local.contributor.affiliationKesteven, M. J., CSIRO, Australia Telescope National Facilityen_AU
local.contributor.affiliationPoppi, Sergio, INAF Osservatorio Astronomico di Cagliarien_AU
local.contributor.affiliationStaveley-Smith, Lister, University of Western Australiaen_AU
local.contributor.authoremailu1000518@anu.edu.auen_AU
local.contributor.authoruidMcClure-Griffiths, Naomi, u1000518en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor020104 - Galactic Astronomyen_AU
local.identifier.absfor020201 - Atomic and Molecular Physicsen_AU
local.identifier.absfor030699 - Physical Chemistry not elsewhere classifieden_AU
local.identifier.ariespublicationa383154xPUB9583en_AU
local.identifier.citationvolume855en_AU
local.identifier.doi10.3847/1538-4357/aaafd0en_AU
local.identifier.scopusID2-s2.0-85044075752
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://iopscience.iop.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Herron_Advanced_Diagnostics_for_the_2018.pdf
Size:
21.52 MB
Format:
Adobe Portable Document Format