Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance, and computational modelling.
Date
2000
Authors
Patzwahl, D
Zanker, Johannes
Journal Title
Journal ISSN
Volume Title
Publisher
Blackwell Publishing Ltd
Abstract
Based on single cell recordings in monkey, it has been suggested that neural activity can be related directly to psychophysically measured threshold behaviour. Here, we investigated in humans whether evoked potentials correlate with behavioural measurements like discrimination thresholds and reaction time. Subjects were asked to report the perceived direction of object motion stimuli which contained variable amounts of coherent motion. Simultaneously, we recorded evoked potentials with a multielectrode array, or measured the reaction time. We show here that motion coherence had a strong influence on both amplitude and latency of the evoked potential. Stronger motion signals evoked stronger and faster cortical responses. The latency reduction of the motion onset response with increasing coherence correlated very well with the concurrent decrease in reaction time. Taken together, these results suggest that temporal integration is an important step in analysing motion signals to generate a reliable behavioural response. We stimulated a two-dimensional array of correlation-type motion detectors with the same motion sequences, and analysed the distribution of local motion signals according to signal detection theory. Performance resembled that of human subjects when the decision strategy was optimized so as to exclude small signals and, in particular, when the ideal observer had some knowledge about a region of interest in which the object was to be expected.
Description
Keywords
Keywords: article; behavior; clinical article; computer model; electrode; evoked response; human; human experiment; latent period; movement perception; nerve stimulation; normal human; object relation; perceptive discrimination; priority journal; psychophysics; rea Computer simulations; Evoked potentials; Man; Motion perception; Reaction time; Vision
Citation
Collections
Source
European Journal of Neuroscience
Type
Journal article
Book Title
Entity type
Access Statement
License Rights
Restricted until
2037-12-31
Downloads
File
Description