We are experiencing issues opening hdl.handle.net links on ANU campus. If you are experiencing issues, please contact the repository team repository.admin@anu.edu.au for assistance.
 

Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance, and computational modelling.

Date

2000

Authors

Patzwahl, D
Zanker, Johannes

Journal Title

Journal ISSN

Volume Title

Publisher

Blackwell Publishing Ltd

Abstract

Based on single cell recordings in monkey, it has been suggested that neural activity can be related directly to psychophysically measured threshold behaviour. Here, we investigated in humans whether evoked potentials correlate with behavioural measurements like discrimination thresholds and reaction time. Subjects were asked to report the perceived direction of object motion stimuli which contained variable amounts of coherent motion. Simultaneously, we recorded evoked potentials with a multielectrode array, or measured the reaction time. We show here that motion coherence had a strong influence on both amplitude and latency of the evoked potential. Stronger motion signals evoked stronger and faster cortical responses. The latency reduction of the motion onset response with increasing coherence correlated very well with the concurrent decrease in reaction time. Taken together, these results suggest that temporal integration is an important step in analysing motion signals to generate a reliable behavioural response. We stimulated a two-dimensional array of correlation-type motion detectors with the same motion sequences, and analysed the distribution of local motion signals according to signal detection theory. Performance resembled that of human subjects when the decision strategy was optimized so as to exclude small signals and, in particular, when the ideal observer had some knowledge about a region of interest in which the object was to be expected.

Description

Keywords

Keywords: article; behavior; clinical article; computer model; electrode; evoked response; human; human experiment; latent period; movement perception; nerve stimulation; normal human; object relation; perceptive discrimination; priority journal; psychophysics; rea Computer simulations; Evoked potentials; Man; Motion perception; Reaction time; Vision

Citation

Source

European Journal of Neuroscience

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906