The influence of temporal information on human action recognition with large number of classes

Date

2014

Authors

Murthy, O. V. Ramana
Goecke, Roland

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Abstract

Human action recognition from video input has seen much interest over the last decade. In recent years, the trend is clearly towards action recognition in real-world, unconstrained conditions (i.e. not acted) with an ever growing number of action classes. Much of the work so far has used single frames or sequences of frames where each frame was treated individually. This paper investigates the contribution that temporal information can make to human action recognition in the context of a large number of action classes. The key contributions are: (i) We propose a complementary information channel to the Bag-of- Words framework that models the temporal occurrence of the local information in videos. (ii) We investigate the influence of sensible local information whose temporal occurrence is more vital than any local information. The experimental validation on action recognition datasets with the largest number of classes to date shows the effectiveness of the proposed approach.

Description

Keywords

Gesture recognition, Computational modeling, Hidden Markov models, Histograms, Support vector machines, Training, Trajectory, Vectors, Action recognition, Experimental validations, Human-action recognition, Information channels, Local information, Number of class, Single frames, Temporal information, Motion estimation

Citation

Source

Reflective Features Detection and Hierarchical Reflections Separation in Image Sequences

Type

Conference paper

Book Title

Entity type

Access Statement

License Rights

Restricted until