A Broadband Laboratory Study of the Seismic Properties of Cracked and Fluid-Saturated Synthetic Glass Media

dc.contributor.authorLi, Yang
dc.contributor.authorDavid, Emmanuel
dc.contributor.authorNakagawa, Seiji
dc.contributor.authorKneafsey, Timothy
dc.contributor.authorSchmitt, Douglas
dc.contributor.authorJackson, Ian
dc.date.accessioned2021-05-10T03:00:58Z
dc.date.available2021-05-10T03:00:58Z
dc.date.issued2018-05-21
dc.date.updated2020-11-23T11:29:32Z
dc.description.abstractFor better understanding of frequency dependence (dispersion) of seismic wave velocities caused by stress‐induced fluid flow, broadband laboratory measurements were performed on a suite of synthetic glass media containing both equant pores and thermal cracks. Complementary forced oscillation, resonant bar, and ultrasonic techniques provided access to millihertz‐hertz frequencies, ~1 kHz frequency, and ~1 MHz frequency, respectively. The wave speeds or effective elastic moduli and associated dissipation were measured on samples under dry, argon‐ or nitrogen‐saturated, and water‐saturated conditions in sequence. The elastic moduli, in situ permeability, and crack porosity inferred from in situ X‐ray computed tomography all attest to strong pressure‐induced crack closure for differential (confining‐minus‐pore) pressures <30 MPa, consistent with zero‐pressure crack aspect ratios <4 × 10−4. The low permeabilities of these materials allow access to undrained conditions, even at subhertz frequencies. The ultrasonically measured elastic moduli reveal consistently higher shear and bulk moduli upon fluid saturation—diagnostic of the saturated‐isolated regime. For a glass rod specimen, containing cracks but no pores, saturated‐isolated conditions apparently persist to subhertz frequencies—requiring in situ aspect ratios (minimum/maximum dimension) <10−5. In marked contrast, the shear modulus measured at subhertz frequencies on a cracked glass bead specimen of 5% porosity, is insensitive to fluid saturation, consistent with the Biot‐Gassmann model for the saturated‐isobaric regime. The measured dispersion of the shear modulus approaches 10% over the millihertz‐megahertz frequency range for the cracked and fluid‐saturated media—implying that laboratory ultrasonic data should be used with care in the interpretation of field data.en_AU
dc.description.sponsorshipY. L. acknowledges PhD scholarship support from the Australian National University, as well as research support by grant DP110101830 from the Australian Research Council to I. J. and D. R. S. The experiments at LBNL were supported by the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences of the U.S. Department of Energy, under the US DOE contract DEAC02-05CH11231.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.citationLi, Y., David, E. C., Nakagawa, S., Kneafsey, T. J., Schmitt, D. R., & Jackson, I. (2018). A broadband laboratory study of the seismic properties of cracked and fluid-saturated synthetic glass media. Journal of Geophysical Research: Solid Earth, 123, 3501–3538. https://doi.org/ 10.1029/2017JB014671en_AU
dc.identifier.issn2169-9313en_AU
dc.identifier.urihttp://hdl.handle.net/1885/232571
dc.language.isoen_AUen_AU
dc.provenancehttps://v2.sherpa.ac.uk/id/publication/11081..."Published version can be made open access on institutional repository after 6 month embargo" from SHERPA/RoMEO site (as at 10.5.2021).en_AU
dc.publisherWiley Blackwellen_AU
dc.relationhttp://purl.org/au-research/grants/arc/DP110101830en_AU
dc.rights© 2018 American Geophysical Unionen_AU
dc.sourceJournal of Geophysical Research: Solid Earthen_AU
dc.titleA Broadband Laboratory Study of the Seismic Properties of Cracked and Fluid-Saturated Synthetic Glass Mediaen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
dcterms.dateAccepted2018-04-06
local.bibliographicCitation.issue5en_AU
local.bibliographicCitation.lastpage3538en_AU
local.bibliographicCitation.startpage3501en_AU
local.contributor.affiliationLi, Yang, College of Science, ANUen_AU
local.contributor.affiliationDavid, Emmanuel, College of Science, ANUen_AU
local.contributor.affiliationNakagawa, Seiji, Energy Geosciences Divisionen_AU
local.contributor.affiliationKneafsey, Timothy, Energy Geosciences Divisionen_AU
local.contributor.affiliationSchmitt, Douglas, University of Albertaen_AU
local.contributor.affiliationJackson, Ian, College of Science, ANUen_AU
local.contributor.authoremailu7800055@anu.edu.auen_AU
local.contributor.authoruidLi, Yang, u4751448en_AU
local.contributor.authoruidDavid, Emmanuel, u5384603en_AU
local.contributor.authoruidJackson, Ian, u7800055en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor040400 - GEOPHYSICSen_AU
local.identifier.absseo970104 - Expanding Knowledge in the Earth Sciencesen_AU
local.identifier.ariespublicationa383154xPUB10018en_AU
local.identifier.citationvolume123en_AU
local.identifier.doi10.1029/2017JB014671en_AU
local.identifier.scopusID2-s2.0-85046759640
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://agupubs.onlinelibrary.wiley.com/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Li_A_Broadband_Laboratory_Study_2018.pdf
Size:
7.15 MB
Format:
Adobe Portable Document Format