Inverse Design of MXenes for High-Capacity Energy Storage Materials Using Multi-Target Machine Learning

dc.contributor.authorLi, Sichao
dc.contributor.authorBarnard, Amanda
dc.date.accessioned2022-12-13T00:04:05Z
dc.date.issued2022
dc.description.abstractThere is significant interest in discovering high-capacity battery materials, prompting the investigation of the electrochemical energy storage potential of the two-dimensional early transition metal carbides known as MXenes. Predicting the relationship between the composition of a MXene and electrochemical properties is a focus of considerable research. In this paper we classify the specific MXene chemical formula using a new categorical descriptor and simultaneously predict multiple target electrochemical properties. We then invert the design challenge and predict the formula for MXenes based on a set of battery performance criteria. This approach involves a workflow that includes multi-target regression and multi-target classification, focusing on the physicochemical features most pertinent to battery design. The final inverse model recommends Li2M2C and Mg2M2C (M = Sc, Ti, Cr) as candidates for more focused research, based on desirable ranges of gravimetric capacity, voltage, and induced charge.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0897-4756en_AU
dc.identifier.urihttp://hdl.handle.net/1885/282298
dc.language.isoen_AUen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.rights© 2022 American Chemical Societyen_AU
dc.sourceChemistry of Materialsen_AU
dc.titleInverse Design of MXenes for High-Capacity Energy Storage Materials Using Multi-Target Machine Learningen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue11en_AU
local.bibliographicCitation.lastpage4974en_AU
local.bibliographicCitation.startpage4964en_AU
local.contributor.affiliationLi, Sichao, School of Computing, The Australian National Universityen_AU
local.contributor.affiliationBarnard, S., School of Computing, The Australian National Universityen_AU
local.contributor.authoremailamanda.s.barnard@anu.edu.auen_AU
local.contributor.authoruidu5628161en_AU
local.description.embargo2099-12-31
local.identifier.citationvolume34en_AU
local.identifier.doi10.1021/acs.chemmater.2c00200en_AU
local.identifier.uidSubmittedByu5628161en_AU
local.publisher.urlhttp://pubs.acs.org/journal/cmatexen_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Chem Mater 34 (2022) 4964.pdf
Size:
3.76 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
884 B
Format:
Item-specific license agreed upon to submission
Description: