Inverse Design of MXenes for High-Capacity Energy Storage Materials Using Multi-Target Machine Learning
dc.contributor.author | Li, Sichao | |
dc.contributor.author | Barnard, Amanda | |
dc.date.accessioned | 2022-12-13T00:04:05Z | |
dc.date.issued | 2022 | |
dc.description.abstract | There is significant interest in discovering high-capacity battery materials, prompting the investigation of the electrochemical energy storage potential of the two-dimensional early transition metal carbides known as MXenes. Predicting the relationship between the composition of a MXene and electrochemical properties is a focus of considerable research. In this paper we classify the specific MXene chemical formula using a new categorical descriptor and simultaneously predict multiple target electrochemical properties. We then invert the design challenge and predict the formula for MXenes based on a set of battery performance criteria. This approach involves a workflow that includes multi-target regression and multi-target classification, focusing on the physicochemical features most pertinent to battery design. The final inverse model recommends Li2M2C and Mg2M2C (M = Sc, Ti, Cr) as candidates for more focused research, based on desirable ranges of gravimetric capacity, voltage, and induced charge. | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.issn | 0897-4756 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/282298 | |
dc.language.iso | en_AU | en_AU |
dc.publisher | American Chemical Society | en_AU |
dc.rights | © 2022 American Chemical Society | en_AU |
dc.source | Chemistry of Materials | en_AU |
dc.title | Inverse Design of MXenes for High-Capacity Energy Storage Materials Using Multi-Target Machine Learning | en_AU |
dc.type | Journal article | en_AU |
local.bibliographicCitation.issue | 11 | en_AU |
local.bibliographicCitation.lastpage | 4974 | en_AU |
local.bibliographicCitation.startpage | 4964 | en_AU |
local.contributor.affiliation | Li, Sichao, School of Computing, The Australian National University | en_AU |
local.contributor.affiliation | Barnard, S., School of Computing, The Australian National University | en_AU |
local.contributor.authoremail | amanda.s.barnard@anu.edu.au | en_AU |
local.contributor.authoruid | u5628161 | en_AU |
local.description.embargo | 2099-12-31 | |
local.identifier.citationvolume | 34 | en_AU |
local.identifier.doi | 10.1021/acs.chemmater.2c00200 | en_AU |
local.identifier.uidSubmittedBy | u5628161 | en_AU |
local.publisher.url | http://pubs.acs.org/journal/cmatex | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Chem Mater 34 (2022) 4964.pdf
- Size:
- 3.76 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 884 B
- Format:
- Item-specific license agreed upon to submission
- Description: