HTN Plan Repair via Model Transformation

dc.contributor.authorHoller, Daniel
dc.contributor.authorBercher, Pascal
dc.contributor.authorBehnke, Gregor
dc.contributor.authorBiundo, Susanne
dc.contributor.editorSchmid, Ute
dc.contributor.editorKlügl, Franziska
dc.contributor.editorWolter, Diedrich
dc.coverage.spatialBamberg, Germany
dc.date.accessioned2024-01-24T22:59:31Z
dc.date.createdSeptember 21–25, 2020
dc.date.issued2020
dc.date.updated2022-10-02T07:17:37Z
dc.description.abstractTo make planning feasible, planning models abstract from many details of the modeled system. When executing plans in the actual system, the model might be inaccurate in a critical point, and plan execution may fail. There are two options to handle this case: the previous solution can be modified to address the failure (plan repair), or the planning process can be re-started from the new situation (re-planning). In HTN planning, discarding the plan and generating a new one from the novel situation is not easily possible, because the HTN solution criteria make it necessary to take already executed actions into account. Therefore all approaches to repair plans in the literature are based on specialized algorithms. In this paper, we discuss the problem in detail and introduce a novel approach that makes it possible to use unchanged, off-the-shelf HTN planning systems to repair broken HTN plans. That way, no specialized solvers are needed.en_AU
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 232722074 – SFB 1102 / Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 232722074 – SFB 1102.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn978-3-030-58284-5en_AU
dc.identifier.urihttp://hdl.handle.net/1885/311833
dc.language.isoen_AUen_AU
dc.publisherSpringer Nature Switzerland AGen_AU
dc.relation.ispartofseries43rd German Conference on Artificial Intelligence (Künstliche Intelligenz)en_AU
dc.rights© Springer Nature Switzerland AG 2020en_AU
dc.subjectHTN Planningen_AU
dc.subjectPlan repairen_AU
dc.subjectRe-planningen_AU
dc.titleHTN Plan Repair via Model Transformationen_AU
dc.typeConference paperen_AU
local.bibliographicCitation.lastpage101en_AU
local.bibliographicCitation.startpage88en_AU
local.contributor.affiliationHoller, Daniel, Saarland Universityen_AU
local.contributor.affiliationBercher, Pascal, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationBehnke, Gregor , University of Freiburgen_AU
local.contributor.affiliationBiundo, Susanne, Ulm Universityen_AU
local.contributor.authoremailu1092535@anu.edu.auen_AU
local.contributor.authoruidBercher, Pascal, u1092535en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor460209 - Planning and decision makingen_AU
local.identifier.ariespublicationa383154xPUB16986en_AU
local.identifier.doi10.1007/978-3-030-58285-2_7en_AU
local.identifier.scopusID2-s2.0-85091145262
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://link.springer.com/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
978-3-030-58285-2_7.pdf
Size:
350.7 KB
Format:
Adobe Portable Document Format
Description:
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906