Asymptotics of discrete MDL for online prediction
dc.contributor.author | Poland, Jan | |
dc.contributor.author | Hutter, Marcus | |
dc.date.accessioned | 2015-08-31T04:35:09Z | |
dc.date.available | 2015-08-31T04:35:09Z | |
dc.date.issued | 2005-06-08 | |
dc.description.abstract | Minimum Description Length (MDL) is an important principle for induction and prediction, with strong relations to optimal Bayesian learning. This paper deals with learning non-i.i.d. processes by means of two-part MDL, where the underlying model class is countable. We consider the online learning framework, i.e. observations come in one by one, and the predictor is allowed to update his state of mind after each time step. We identify two ways of predicting by MDL for this setup, namely a static} and a dynamic one. (A third variant, hybrid MDL, will turn out inferior.) We will prove that under the only assumption that the data is generated by a distribution contained in the model class, the MDL predictions converge to the true values almost surely. This is accomplished by proving finite bounds on the quadratic, the Hellinger, and the Kullback-Leibler loss of the MDL learner, which are however exponentially worse than for Bayesian prediction. We demonstrate that these bounds are sharp, even for model classes containing only Bernoulli distributions. We show how these bounds imply regret bounds for arbitrary loss functions. Our results apply to a wide range of setups, namely sequence prediction, pattern classification, regression, and universal induction in the sense of Algorithmic Information Theory among others. | en_AU |
dc.identifier.issn | 0018-9448 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/15036 | |
dc.publisher | IEEE | en_AU |
dc.rights | http://www.sherpa.ac.uk/romeo/issn/0018-9448/..."Author's post-print on Author's server or Institutional server" from SHERPA/RoMEO site (as at 31/08/15). | en_AU |
dc.rights | © 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en_AU |
dc.source | IEEE Transactions on Information Theory, 51:11 (2005) 3780-3795 | en_AU |
dc.title | Asymptotics of discrete MDL for online prediction | en_AU |
dc.type | Journal article | en_AU |
dcterms.accessRights | Open Access | |
local.bibliographicCitation.issue | 11 | en_AU |
local.bibliographicCitation.lastpage | 3795 | en_AU |
local.bibliographicCitation.startpage | 3780 | en_AU |
local.contributor.affiliation | Hutter, M., Research School of Computer Science, The Australian National University | en_AU |
local.contributor.authoremail | marcus.hutter@anu.edu.au | en_AU |
local.contributor.authoruid | u4350841 | en_AU |
local.identifier.citationvolume | 51 | en_AU |
local.identifier.doi | 10.1109/TIT.2005.856956 | en_AU |
local.identifier.uidSubmittedBy | u1005913 | en_AU |
local.publisher.url | http://www.ieee.org/index.html | en_AU |
local.type.status | Accepted Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- Poland and Hutter Asymptotics of Discrete MDL 2005.pdf
- Size:
- 376.32 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 884 B
- Format:
- Item-specific license agreed upon to submission
- Description: