Comparison of thermostatting mechanisms in NVT and NPT simulations of decane under shear
dc.contributor.author | Delhommelle, Jerome | |
dc.contributor.author | Evans, Denis J. | |
dc.date.accessioned | 2015-10-19T23:21:44Z | |
dc.date.available | 2015-10-19T23:21:44Z | |
dc.date.issued | 2001-07-01 | |
dc.date.updated | 2015-12-12T09:45:38Z | |
dc.description.abstract | Nonequilibrium molecular dynamics (NEMD) simulations play a major role in characterizing the rheological properties of fluids undergoing shear flow. However, all previous studies of flows in molecular fluids either use an “atomic” thermostat which makes incorrect assumptions concerning the streaming velocity of atoms within their constituent molecules, or they employ a center of mass kinetic (COM) thermostat which only controls the temperature of relatively few degrees of freedom (3) in complex high molecular weight compounds. In the present paper we show how recently developed configurational expressions for the thermodynamic temperature can be used to develop thermostatting mechanisms which avoid both of these problems. We propose a thermostat based on a configurational expression for the temperature and apply it to NEMD simulations of decane undergoing Couette flow at constant volume and at constant pressure. The results so obtained are compared with those obtained using a COM kinetic thermostat. At equilibrium the properties of systems thermostatted in the two different ways are of course equivalent. However, we show that the two responses differ far from equilibrium. In particular, we show that the increase in the potential energy of the internal modes with increasing shear is only observed with a Gaussian isokinetic COM thermostat in both NVT and NPT simulations. There is no such increase with the configurational thermostat, which, unlike the Gaussian isokinetic COM thermostat, correctly accounts for the internal degrees of freedom of the molecular fluid. | |
dc.identifier.issn | 0021-9606 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/15975 | |
dc.publisher | American Institute of Physics (AIP) | |
dc.rights | http://www.sherpa.ac.uk/romeo/issn/0021-9606..."Publishers version/PDF may be used on author's personal website, institutional website or institutional repository" from SHERPA/RoMEO site (as at 20/10/15). Copyright 2001 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in The Journal of Chemical Physics and may be found at https://doi.org/10.1063/1.1376628 | |
dc.source | The Journal of Chemical Physics | |
dc.subject | Keywords: Algorithms; Computer simulation; Degrees of freedom (mechanics); Feedback; Kinetic theory; Shear flow; Strain rate; Thermodynamics; Thermostats; Nonequilibrium molecular dynamics (NEMD) simulations; Molecular dynamics | |
dc.title | Comparison of thermostatting mechanisms in NVT and NPT simulations of decane under shear | |
dc.type | Journal article | |
local.bibliographicCitation.issue | 1 | en_AU |
local.bibliographicCitation.lastpage | 49 | en_AU |
local.bibliographicCitation.startpage | 43 | en_AU |
local.contributor.affiliation | Delhommelle, Jerome, College of Physical and Mathematical Sciences, CPMS Research School of Chemistry, RSC General, The Australian National University | en_AU |
local.contributor.affiliation | Evans, Denis, College of Physical and Mathematical Sciences, CPMS Research School of Chemistry, RSC General, The Australian National University | en_AU |
local.contributor.authoremail | jerome.delhommelle@lctn.uhp-nancy.fr | en_AU |
local.contributor.authoruid | U4004952 | en_AU |
local.description.notes | Imported from ARIES | en_AU |
local.description.refereed | Yes | |
local.identifier.absfor | 030505 | en_AU |
local.identifier.ariespublication | MigratedxPub25910 | en_AU |
local.identifier.citationvolume | 115 | en_AU |
local.identifier.doi | 10.1063/1.1376628 | en_AU |
local.identifier.scopusID | 2-s2.0-0035396367 | |
local.identifier.uidSubmittedBy | u3488905 | en_AU |
local.publisher.url | https://www.aip.org/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- 01_Delhommelle_Comparison_of_thermostatting_2001.pdf
- Size:
- 415.37 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 884 B
- Format:
- Item-specific license agreed upon to submission
- Description: