FACH: Fast algorithm for detecting cohesive hierarchies of communities in large networks
dc.contributor.author | Rezvani, Motjaba | |
dc.contributor.author | Wang, Qing | |
dc.contributor.author | Liang, Weifa | |
dc.date.accessioned | 2021-07-19T04:53:17Z | |
dc.date.available | 2021-07-19T04:53:17Z | |
dc.date.issued | 2018-02-02 | |
dc.description.abstract | Vertices in a real-world social network can be grouped into densely connected communities that are sparsely connected to other groups. Moreover, these communities can be partitioned into successively more cohesive communities. Despite an ever-growing pile of research on hierarchical community detection, existing methods suffer from either inefficiency or inappropriate modeling. Yet, some cut-based approaches have shown to be effective in finding communities without hierarchies. In this paper, we study the hierarchical community detection problem in large networks and show that it is NP-hard. We then propose an efficient algorithm based on edge-cuts to identify the hierarchy of communities. Since communities at lower levels of the hierarchy are denser than the higher levels, we leverage a fast network sparsification technique to enhance the running time of the algorithm. We further propose a randomized approximation algorithm for information centrality of networks. We finally evaluate the performance of the proposed algorithms by conducting extensive experiments using real datasets. Our experimental results show that the proposed algorithms are promising and outperform the state-of-the-art algorithms by several orders of magnitude. | en_AU |
dc.description.sponsorship | This work is supported by the grant of Australian Research Council Discovery Project No. DP120102627. | en_AU |
dc.identifier.isbn | 978-1-4503-5581-0 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/240922 | |
dc.provenance | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. | en_AU |
dc.publisher | ACM | en_AU |
dc.relation | http://purl.org/au-research/grants/arc/DP120102627 | en_AU |
dc.relation.ispartofseries | 11th ACM International Conference on Web Search and Data Mining, WSDM 2018 | en_AU |
dc.rights | © 2018 Association for Computing Machinery | en_AU |
dc.source | WSDM '18: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining | en_AU |
dc.subject | Hierarchical community detection | en_AU |
dc.subject | large-scale networks | en_AU |
dc.title | FACH: Fast algorithm for detecting cohesive hierarchies of communities in large networks | en_AU |
dc.type | Conference paper | en_AU |
dcterms.accessRights | Open Access | en_AU |
local.bibliographicCitation.lastpage | 494 | en_AU |
local.bibliographicCitation.startpage | 486 | en_AU |
local.contributor.affiliation | Rezvani, Motjaba, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Wang, Qing, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Liang, Weifa, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.authoremail | u5410055@anu.edu.au | en_AU |
local.contributor.authoruid | Rezvani, Motjaba, u5410055 | en_AU |
local.contributor.authoruid | Wang, Qing, u2583336 | en_AU |
local.contributor.authoruid | Liang, Weifa, u9404892 | en_AU |
local.description.notes | Added manually as didn't import from ARIES | en_AU |
local.identifier.ariespublication | a383154xPUB10235 | en_AU |
local.identifier.ariespublication | a383154xPUB10235 | |
local.identifier.doi | 10.1145/3159652.3159704 | en_AU |
local.identifier.uidSubmittedBy | u5031974 | en_AU |
local.publisher.url | https://dl.acm.org/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- 3159652.3159704.pdf
- Size:
- 1.54 MB
- Format:
- Adobe Portable Document Format
- Description: