Four-wave mixing in slow light engineered silicon photonic crystal waveguides

dc.contributor.authorMonat, C
dc.contributor.authorEbnali-Heidari, M
dc.contributor.authorGrillet, C
dc.contributor.authorCorcoran, B
dc.contributor.authorEggleton, B J
dc.contributor.authorWhite, T P
dc.contributor.authorO'Faolain, Liam
dc.contributor.authorLi, J
dc.contributor.authorKrauss, T F
dc.date.accessioned2016-05-17T01:05:28Z
dc.date.available2016-05-17T01:05:28Z
dc.date.issued2010-10-25
dc.date.updated2016-06-14T08:36:54Z
dc.description.abstractWe experimentally investigate four-wave mixing (FWM) in short (80 μm) dispersion-engineered slow light silicon photonic crystal waveguides. The pump, probe and idler signals all lie in a 14 nm wide low dispersion region with a near-constant group velocity of c/30. We measure an instantaneous conversion efficiency of up to -9dB between the idler and the continuous-wave probe, with 1W peak pump power and 6 nm pump-probe detuning. This conversion efficiency is found to be considerably higher (>10 × ) than that of a Si nanowire with a group velocity ten times larger. In addition, we estimate the FWM bandwidth to be at least that of the flat band slow light window. These results, supported by numerical simulations, emphasize the importance of engineering the dispersion of PhC waveguides to exploit the slow light enhancement of FWM efficiency, even for short device lengths.
dc.description.sponsorshipThe support of the Australian Research Council through its Centre of Excellence and Discovery grant programs is gratefully acknowledged as well as the EU-FP7 Marie Curie Fellowship project “OSIRIS”. Additional acknowledgment is given to the support of the International Science Linkages Program of the Department of Education, Science and Technology. The silicon samples were fabricated in the framework of the EU-FP6 funded ePIXnet Nanostructuring Platform for Photonic Integration (www.nanophotonics.eu).en_AU
dc.identifier.issn1094-4087en_AU
dc.identifier.urihttp://hdl.handle.net/1885/101421
dc.publisherOptical Society of America
dc.rights© 2010 Optical Society of America
dc.sourceOptics express
dc.subjectKeywords: Continuous waves; Detunings; Flat band; Group velocities; Light enhancement; Numerical simulation; Pump power; Pump-probe; Si nanowire; Silicon photonic crystals; Conversion efficiency; Dispersion (waves); Four wave mixing; Laser optics; Light velocity; N
dc.titleFour-wave mixing in slow light engineered silicon photonic crystal waveguides
dc.typeJournal article
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.issue22en_AU
local.bibliographicCitation.lastpage22927en_AU
local.bibliographicCitation.startpage22915en_AU
local.contributor.affiliationMonat, Christelle, University of Sydney, Australiaen_AU
local.contributor.affiliationEbnali-Heidari, M., University of Shahrekord, Iranen_AU
local.contributor.affiliationGrillet, Christian, University of Sydney, Australiaen_AU
local.contributor.affiliationCorcoran, Bill, University of Sydney, Australiaen_AU
local.contributor.affiliationEggleton, Benjamin J, University of Sydney, Australiaen_AU
local.contributor.affiliationWhite, Thomas, College of Engineering and Computer Science, College of Engineering and Computer Science, Research School of Engineering, The Australian National Universityen_AU
local.contributor.affiliationO'Faolain, Liam, University of St Andrews, United Kingdomen_AU
local.contributor.affiliationLi, J., University of St. Andrews, United Kingdomen_AU
local.contributor.affiliationKrauss, Thomas F, University of St Andrews, United Kingdomen_AU
local.contributor.authoremailthomas.white@anu.edu.auen_AU
local.contributor.authoruidu4835361en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor020500en_AU
local.identifier.ariespublicationf5625xPUB7976en_AU
local.identifier.citationvolume18en_AU
local.identifier.doi10.1364/OE.18.022915en_AU
local.identifier.essn1094-4087en_AU
local.identifier.scopusID2-s2.0-78149369927
local.identifier.uidSubmittedByu3488905en_AU
local.publisher.urlhttp://www.osa.org/en-us/home/en_AU
local.type.statusPublished Versionen_AU

Downloads

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
884 B
Format:
Item-specific license agreed upon to submission
Description: