AR models of singular spectral matrices

dc.contributor.authorAnderson, Brian
dc.contributor.authorDeistler, Manfred
dc.contributor.authorChen, Weitian
dc.contributor.authorFiller, Alexander
dc.coverage.spatialShanghai China
dc.date.accessioned2015-12-10T22:29:21Z
dc.date.createdDecember 16-18 2009
dc.date.issued2009
dc.date.updated2016-02-24T10:59:52Z
dc.description.abstractThis paper deals with autoregressive models of singular spectra. The starting point is the assumption that there is available a transfer function matrix W(q) expressible in the form D -1(q)B for some tall constant matrix B of full column rank and with the determinantal zeros of D(q) all stable. It is shown that, even if this matrix fraction representation of W(q) is not coprime, W(q) has a coprime matrix fraction description of the form D̃ -1(q)[I m 0] T . It is also shown how to characterize the equivalence class of all autoregressive matrix fraction descriptions of W(q), and how canonical representatives can be obtained. A canonical representative can be obtained with a minimal set of row degrees for the submatrix of D̃(q) obtained by deleting the first m rows. The paper also considers singular autoregressive descriptions of nested sequences of W p(q), p = p 0, p 0+1, . . . , where p denotes the number of rows, and shows that these canonical descriptions are nested, and contain a number of parameters growing linearly with p.
dc.identifier.isbn9781424438723
dc.identifier.urihttp://hdl.handle.net/1885/54863
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE Inc)
dc.relation.ispartofseriesIEEE Conference on Decision and Control and Chinese Control Conference 2009
dc.sourceProceedings of IEEE Conference on Decision and Control and Chinese Control Conference 2009
dc.subjectKeywords: AR models; Auto regressive models; Auto-regressive; Column ranks; Constant matrix; Coprime; matrix; Matrix fraction description; Spectral matrices; Submatrix; Transfer function matrix; Equivalence classes; Set theory; Matrix algebra
dc.titleAR models of singular spectral matrices
dc.typeConference paper
local.bibliographicCitation.lastpage5726
local.bibliographicCitation.startpage5721
local.contributor.affiliationAnderson, Brian, College of Engineering and Computer Science, ANU
local.contributor.affiliationDeistler, Manfred, Vienna University of Technology
local.contributor.affiliationChen, Weitian, College of Engineering and Computer Science, ANU
local.contributor.affiliationFiller, Alexander, Vienna Institute of Technolgy
local.contributor.authoremailu8104642@anu.edu.au
local.contributor.authoruidAnderson, Brian, u8104642
local.contributor.authoruidChen, Weitian, u4582692
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor010203 - Calculus of Variations, Systems Theory and Control Theory
local.identifier.ariespublicationu4334215xPUB312
local.identifier.doi10.1109/CDC.2009.5399891
local.identifier.scopusID2-s2.0-77950793958
local.identifier.uidSubmittedByu4334215
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Anderson_AR_models_of_singular_spectral_2009.pdf
Size:
307.51 KB
Format:
Adobe Portable Document Format