Morphology, microstructure, and doping behaviour: A comparison between different deposition methods for poly-Si/SiOx passivating contacts

dc.contributor.authorTruong, Thien
dc.contributor.authorYan, Di
dc.contributor.authorNguyen, Cam-Phu T.
dc.contributor.authorKho, Teng Choon
dc.contributor.authorGuthrey, Harvey
dc.contributor.authorSeidel, Jan
dc.contributor.authorAl-Jassim, Mowafak M.
dc.contributor.authorCuevas, Andres
dc.contributor.authorMacdonald, Daniel
dc.contributor.authorNguyen, Hieu
dc.date.accessioned2023-12-07T05:26:01Z
dc.date.issued2021-03-04
dc.date.updated2022-09-04T08:16:51Z
dc.description.abstractCrystallographic structures, optoelectronic properties, and nanoscale surface morphologies of ex situ phosphorus-doped polycrystalline silicon (poly-Si)/SiOx passivating contacts, formed by different deposition methods (sputtering, plasma-enhanced chemical vapour deposition [PECVD], and low-pressure chemical vapour deposition [LPCVD]), are investigated and compared. Across all these deposition technologies, we noted the same trend: higher diffusion temperatures yield films that are more crystalline but that have rougher surface morphologies due to bigger surface crystal grains. Also, the recrystallization process of the as-deposited Si films starts from the SiOx interface, rather than from the film surface and bulk. However, there are some distinct differences among these technologies. First, the LPCVD method yields the lowest deposition rate, roughest surfaces, and smallest degree of crystallinity on finished poly-Si films. In contrast, the PECVD method has the highest deposition rate and smoothest surfaces for both as-deposited Si and annealed poly-Si films. Second, as-deposited sputtered and PECVD Si films contain only an amorphous phase, whereas as-deposited LPCVD films already has some crystalline phase. Third, the LPCVD phosphorus in-diffusion into the substrate depends strongly on the initial film thickness, whereas for the other two methods, it is weakly dependent on thickness. Finally, the passivation quality of every poly-Si film type has different responses to the film thickness and diffusion temperature, suggesting that the ex situ doping optimization should be performed independently.en_AU
dc.description.sponsorshipThis workh as been supported by the Australian Renewable Energy Agency (ARENA) through Research Grants RND016 and RND017. H.T.N. acknowledges fellowship support and a collaboration grant from the Australian Centre for Advanced Photovoltaics (ACAP).en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1062-7995en_AU
dc.identifier.urihttp://hdl.handle.net/1885/307733
dc.language.isoen_AUen_AU
dc.publisherJohn Wiley & Sons Incen_AU
dc.rights© 2021 John Wiley & Sons, Ltd.en_AU
dc.sourceProgress in Photovoltaics: Research and Applicationsen_AU
dc.subjectcrystallographic structuresen_AU
dc.subjectoptoelectronic propertiesen_AU
dc.subjectpassivating contactsen_AU
dc.subjectPOLOen_AU
dc.subjectpoly-Sien_AU
dc.subjectsurface morphologiesen_AU
dc.subjectTOPConen_AU
dc.titleMorphology, microstructure, and doping behaviour: A comparison between different deposition methods for poly-Si/SiOx passivating contactsen_AU
dc.typeJournal articleen_AU
dcterms.dateAccepted2021-02-22
local.bibliographicCitation.issue7en_AU
local.bibliographicCitation.lastpage868en_AU
local.bibliographicCitation.startpage857en_AU
local.contributor.affiliationTruong, Thien, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationYan, Di, University of Melbourneen_AU
local.contributor.affiliationNguyen, Cam-Phu T., University of New South Walesen_AU
local.contributor.affiliationKho, Teng, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationGuthrey, Harvey, National Renewable Energy Laboratoryen_AU
local.contributor.affiliationSeidel, Jan, University of New South Walesen_AU
local.contributor.affiliationAl-Jassim, Mowafak M., National Renewable Energy Laboratoryen_AU
local.contributor.affiliationCuevas, Andres, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationMacDonald, Daniel, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationNguyen, Hieu, College of Engineering and Computer Science, ANUen_AU
local.contributor.authoremailu4333833@anu.edu.auen_AU
local.contributor.authoruidTruong, Thien, u6709745en_AU
local.contributor.authoruidKho, Teng, u4333833en_AU
local.contributor.authoruidCuevas, Andres, u9308750en_AU
local.contributor.authoruidMacDonald, Daniel, u9718154en_AU
local.contributor.authoruidNguyen, Hieu, u5247402en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor400910 - Photovoltaic devices (solar cells)en_AU
local.identifier.ariespublicationa383154xPUB20467en_AU
local.identifier.citationvolume29en_AU
local.identifier.doi10.1002/pip.3411en_AU
local.identifier.scopusID2-s2.0-85101923356
local.identifier.thomsonIDWOS:000625501500001
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://onlinelibrary.wiley.com/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Morphology, microstructure, and doping behaviour.pdf
Size:
11.32 MB
Format:
Adobe Portable Document Format
Description: