Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints

dc.contributor.authorGoodwin, Philip
dc.contributor.authorKatavouta, Anna
dc.contributor.authorRoussenov, Vassil M.
dc.contributor.authorFoster, Gavin L
dc.contributor.authorRohling, Eelco
dc.contributor.authorWilliams, Richard G.
dc.date.accessioned2020-01-22T04:05:15Z
dc.date.issued2018
dc.date.updated2019-11-25T07:23:05Z
dc.description.abstractTo restrict global warming to below the agreed targets requires limiting carbon emissions, the principal driver of anthropogenic warming. However, there is significant uncertainty in projecting the amount of carbon that can be emitted, in part due to the limited number of Earth system model simulations and their discrepancies with present-day observations. Here we demonstrate a novel approach to reduce the uncertainty of climate projections; using theory and geological evidence we generate a very large ensemble (3 × 104) of projections that closely match records for nine key climate metrics, which include warming and ocean heat content. Our analysis narrows the uncertainty in surface-warming projections and reduces the range in equilibrium climate sensitivity. We find that a warming target of 1.5 °C above the pre-industrial level requires the total emitted carbon from the start of year 2017 to be less than 195–205 PgC (in over 66% of the simulations), whereas a warming target of 2 °C is only likely if the emitted carbon remains less than 395–455 PgC. At the current emission rates, these warming targets are reached in 17–18 years and 35–41 years, respectively, so that there is a limited window to develop a more carbon-efficient future.
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1752-0894en_AU
dc.identifier.urihttp://hdl.handle.net/1885/198974
dc.language.isoen_AUen_AU
dc.publisherNature Publishing Groupen_AU
dc.rights© 2018 Macmillan Publishers Limited, part of Springer Natureen_AU
dc.sourceNature Geoscienceen_AU
dc.titlePathways to 1.5 °C and 2 °C warming based on observational and geological constraintsen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue2en_AU
local.bibliographicCitation.lastpage107en_AU
local.bibliographicCitation.startpage102en_AU
local.contributor.affiliationGoodwin, Philip, University of Southamptonen_AU
local.contributor.affiliationKatavouta, Anna, University of Liverpoolen_AU
local.contributor.affiliationRoussenov, Vassil M., University of Liverpoolen_AU
local.contributor.affiliationFoster, Gavin L, University of Southamptonen_AU
local.contributor.affiliationRohling, Eelco, College of Science, ANUen_AU
local.contributor.affiliationWilliams, Richard G., University of Liverpoolen_AU
local.contributor.authoremailu4907919@anu.edu.auen_AU
local.contributor.authoruidRohling, Eelco, u4907919en_AU
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.identifier.absfor040699 - Physical Geography and Environmental Geoscience not elsewhere classifieden_AU
local.identifier.absfor059999 - Environmental Sciences not elsewhere classifieden_AU
local.identifier.absseo960399 - Climate and Climate Change not elsewhere classifieden_AU
local.identifier.ariespublicationa383154xPUB9293en_AU
local.identifier.citationvolume11en_AU
local.identifier.doi10.1038/s41561-017-0054-8en_AU
local.identifier.scopusID2-s2.0-85040763726
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://www.nature.com/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Goodwin_Pathways_to_1.5_%C2%B0C_and_2_%C2%B0C_2018.pdf
Size:
2.36 MB
Format:
Adobe Portable Document Format