Near-optimal PAC bounds for discounted MDPs

dc.contributor.authorLattimore, Tor
dc.contributor.authorHutter, Marcus
dc.date.accessioned2015-12-10T22:43:56Z
dc.date.issued2014
dc.date.updated2016-02-24T10:33:52Z
dc.description.abstractWe study upper and lower bounds on the sample-complexity of learning near-optimal behaviour in finite-state discounted Markov Decision Processes (mdps). We prove a new bound for a modified version of Upper Confidence Reinforcement Learning (ucrl) with only cubic dependence on the horizon. The bound is unimprovable in all parameters except the size of the state/action space, where it depends linearly on the number of non-zero transition probabilities. The lower bound strengthens previous work by being both more general (it applies to all policies) and tighter. The upper and lower bounds match up to logarithmic factors provided the transition matrix is not too dense.
dc.identifier.issn0304-3975
dc.identifier.urihttp://hdl.handle.net/1885/58388
dc.publisherElsevier
dc.rightsCopyright Information: © 2014 Elsevier B.V. http://www.sherpa.ac.uk/romeo/issn/0304-3975/..."Author's post-print on open access repository after an embargo period of between 12 months and 48 months" from SHERPA/RoMEO site (as at 10/08/15)
dc.sourceTheoretical Computer Science
dc.titleNear-optimal PAC bounds for discounted MDPs
dc.typeJournal article
local.bibliographicCitation.lastpage143
local.bibliographicCitation.startpage125
local.contributor.affiliationLattimore, Tor, University of Alberta
local.contributor.affiliationHutter, Marcus, College of Engineering and Computer Science, ANU
local.contributor.authoremailu4350841@anu.edu.au
local.contributor.authoruidHutter, Marcus, u4350841
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.identifier.absfor080100 - ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING
local.identifier.absseo970108 - Expanding Knowledge in the Information and Computing Sciences
local.identifier.ariespublicationu4056230xPUB440
local.identifier.citationvolume558
local.identifier.doi10.1016/j.tcs.2014.09.029
local.identifier.scopusID2-s2.0-84926305366
local.identifier.uidSubmittedByu4056230
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Lattimore_Near-optimal_PAC_bounds_for_2014.pdf
Size:
468.63 KB
Format:
Adobe Portable Document Format