Spectroscopic studies of Photosystem II in chlorophyll d -containing Acaryochloris marina
dc.contributor.author | Razeghifard, Mohammad | |
dc.contributor.author | Chen, Min | |
dc.contributor.author | Hughes, Joseph | |
dc.contributor.author | Freeman, Joel | |
dc.contributor.author | Krausz, Elmars | |
dc.contributor.author | Wydrzynski, Thomas | |
dc.date.accessioned | 2015-12-13T22:53:56Z | |
dc.date.issued | 2005 | |
dc.date.updated | 2015-12-11T11:00:59Z | |
dc.description.abstract | Photosystem II (PSII) electron transfer (ET) in the chlorophyll d-containing cyanobacterium Acaryochloris marina (A. marina) was studied by time-resolved electron paramagnetic resonance (EPR) spectroscopy at room temperature, chlorophyll fluorescence, and low-temperature optical spectroscopy. To maximize the ability to measure PSII ET in the intact cells of this organism, growth conditions were optimized to provide the highest specific O2 activity and the instrumental parameters for the EPR measurements of tyrosine Z (YZ) reduction were adjusted to give the best signal-to-noise over spectral resolution. Analysis of the YZ. reduction kinetics revealed that ET to the oxygen-evolving complex on the donor side of PSII in A, marina is indistinguishable from that in higher plants and other cyanobacteria. Likewise, the charge recombination kinetics between the first plastoquinone acceptor QA and the donor side of PSII monitored by the chlorophyll fluorescence decay on the seconds time scale are not significantly different between A. marina and non-chlorophyll d organisms, while low-temperature optical absorption spectroscopy identified the primary electron acceptor in A. marina as pheophytin a. The results indicate that, if the PSII primary electron donor in A. marina is made up of chlorophyll d instead of chlorophyll a, then there must be very different interactions with the protein environment to account for the ET properties, which are similar to higher plants and other cyanobacteria. Nevertheless, the water oxidation mechanism in A. marina is kinetically unaltered. | |
dc.identifier.issn | 0006-2960 | |
dc.identifier.uri | http://hdl.handle.net/1885/82038 | |
dc.publisher | American Chemical Society | |
dc.source | Biochemistry | |
dc.subject | Keywords: Absorption spectroscopy; Electron spin resonance spectroscopy; Electron transitions; Fluorescence; Oxidation; Proteins; Signal to noise ratio; Cyanobacteria; Electron transfer (ET); Optical spectroscopy; Spectral resolution; Chlorophyll; chlorophyll; chlo | |
dc.title | Spectroscopic studies of Photosystem II in chlorophyll d -containing Acaryochloris marina | |
dc.type | Journal article | |
local.bibliographicCitation.issue | 33 | |
local.bibliographicCitation.lastpage | 11187 | |
local.bibliographicCitation.startpage | 11178 | |
local.contributor.affiliation | Razeghifard, Mohammad, College of Medicine, Biology and Environment, ANU | |
local.contributor.affiliation | Chen, Min, College of Medicine, Biology and Environment, ANU | |
local.contributor.affiliation | Hughes, Joseph, College of Physical and Mathematical Sciences, ANU | |
local.contributor.affiliation | Freeman, Joel, College of Medicine, Biology and Environment, ANU | |
local.contributor.affiliation | Krausz, Elmars, College of Physical and Mathematical Sciences, ANU | |
local.contributor.affiliation | Wydrzynski, Thomas, College of Medicine, Biology and Environment, ANU | |
local.contributor.authoremail | u4003719@anu.edu.au | |
local.contributor.authoruid | Razeghifard, Mohammad, u4018863 | |
local.contributor.authoruid | Chen, Min, u4081358 | |
local.contributor.authoruid | Hughes, Joseph, u4003719 | |
local.contributor.authoruid | Freeman, Joel, u4045326 | |
local.contributor.authoruid | Krausz, Elmars, u8102117 | |
local.contributor.authoruid | Wydrzynski, Thomas, u9114707 | |
local.description.embargo | 2037-12-31 | |
local.description.notes | Imported from ARIES | |
local.description.refereed | Yes | |
local.identifier.absfor | 060107 - Enzymes | |
local.identifier.absfor | 030606 - Structural Chemistry and Spectroscopy | |
local.identifier.ariespublication | MigratedxPub10338 | |
local.identifier.citationvolume | 44 | |
local.identifier.doi | 10.1021/bi048314c | |
local.identifier.scopusID | 2-s2.0-23944486368 | |
local.identifier.uidSubmittedBy | Migrated | |
local.type.status | Published Version |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 01_Razeghifard_Spectroscopic_studies_of_2005.pdf
- Size:
- 130.38 KB
- Format:
- Adobe Portable Document Format