Emergent magnetism from lithium freezing in lithium-doped boron nitride

dc.contributor.authorBerlie, Adam
dc.contributor.authorWhite, John
dc.contributor.authorHenderson, Mark
dc.contributor.authorCottrell, S P
dc.date.accessioned2019-03-13T04:20:04Z
dc.date.available2019-03-13T04:20:04Z
dc.date.issued2017
dc.date.updated2019-03-12T07:35:55Z
dc.description.abstractThe synthesis and characterization of Li-doped boron nitride is reported where the sample is in the dilute limit with a stoichiometry of Li-0.01(BN)(3). The diffusion of atomic Li dominates above 150 K, with D-Li similar to 10(-10) cm(2)s(-1), where the Li diffusion rate increases with temperature resulting in activated behavior with an energy scale of 27 meV. Below 150 K the Li diffusion freezes out and the sample enters a magnetic state at approximately 70 K that shows evidence for being glassy in nature. It is believed that this is due to the freezing of Li atoms within the lattice which then involves partial electron injection into the BN layers, and this provides a mechanism for magnetic exchange, resulting in a divergence of the magnetic susceptibility. Our work shows the promise of this material for future study, where there is currently much interest in Li base compounds for energy storage.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn2475-9953en_AU
dc.identifier.urihttp://hdl.handle.net/1885/157108
dc.language.isoen_AUen_AU
dc.provenancehttp://www.sherpa.ac.uk/romeo/issn/2475-9953/..."author can archive publisher's version/PDF" from SHERPA/RoMEO site (as at 13/03/19). Berlie, Adam, et al. "Emergent magnetism from lithium freezing in lithium-doped boron nitride." Physical Review Materials 1.5 (2017): 054405.en_AU
dc.publisherAmerican Physical Societyen_AU
dc.rights© 2017 American Physical Societyen_AU
dc.sourcePhysical Review Materialsen_AU
dc.titleEmergent magnetism from lithium freezing in lithium-doped boron nitrideen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.issue5en_AU
local.bibliographicCitation.lastpage054405-6en_AU
local.bibliographicCitation.startpage054405-1en_AU
local.contributor.affiliationBerlie, Adam, Rutherford Appleton Laboratoryen_AU
local.contributor.affiliationWhite, John, College of Science, ANUen_AU
local.contributor.affiliationHenderson, Mark, Southwest University of Science and Technologyen_AU
local.contributor.affiliationCottrell, S P, Rutherford Appleton Laboratoryen_AU
local.contributor.authoremailrepository.admin@anu.edu.auen_AU
local.contributor.authoruidWhite, John, u8506305en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor030601 - Catalysis and Mechanisms of Reactionsen_AU
local.identifier.absseo850504 - Solar-Photovoltaic Energyen_AU
local.identifier.ariespublicationu4485658xPUB720en_AU
local.identifier.citationvolume1en_AU
local.identifier.doi10.1103/PhysRevMaterials.1.054405en_AU
local.identifier.thomsonID000416585700004
local.identifier.uidSubmittedByu4485658en_AU
local.publisher.urlhttps://www.aps.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Berlie_Emergent_magnetism_from_2017.pdf
Size:
997.32 KB
Format:
Adobe Portable Document Format