Adequate moduli spaces and geometrically reductive group schemes
dc.contributor.author | Alper, Jared | |
dc.date.accessioned | 2016-03-18T01:20:14Z | |
dc.date.available | 2016-03-18T01:20:14Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We introduce the notion of an adequate moduli space. The theory of adequate moduli spaces provides a framework for studying algebraic spaces which geometrically approximate algebraic stacks with reductive stabilizers in characteristic p. The definition of an adequate moduli space generalizes the existing notion of a good moduli space to characteristic p (and mixed characteristic). The most important examples of an adequate moduli space are: (1) the morphism from the quotient stack [Xss/G] of the semistable locus to the GIT quotient Xss//G and (2) the morphism from an algebraic stack with finite inertia to the Keel–Mori coarse moduli space. It is shown that most of the fundamental properties of the GIT quotient Xss//G follow from only the defining properties of an adequate moduli space. We provide applications of adequate moduli spaces to the structure of geometrically reductive and reductive group schemes. In particular, results of Seshadri and Waterhouse are generalized. The theory of adequate moduli spaces provides the possibility for intrinsic constructions of projective moduli spaces in characteristic p. | en_AU |
dc.identifier.issn | 1056-3911 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/100586 | |
dc.publisher | American Mathematical Society | en_AU |
dc.rights | © Foundation Compositio Mathematica 2014. This article is distributed with Open Access under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial reuse, distribution, and reproduction in any medium, provided that the original work is properly cited. For commercial re-use, please contact the Foundation Compositio Mathematica. | en_AU |
dc.source | Algebraic Geometry | en_AU |
dc.title | Adequate moduli spaces and geometrically reductive group schemes | en_AU |
dc.type | Journal article | en_AU |
dcterms.accessRights | Open Access | en_AU |
local.bibliographicCitation.issue | 4 | en_AU |
local.bibliographicCitation.lastpage | 531 | en_AU |
local.bibliographicCitation.startpage | 489 | en_AU |
local.contributor.affiliation | Alper, Jarod, College of Physical and Mathematical Sciences, CPMS Mathematical Sciences Institute, Centre for Mathematics and Its Applications, The Australian National University | en_AU |
local.contributor.authoremail | jarod.alper@anu.edu.au | en_AU |
local.contributor.authoruid | u5266438 | en_AU |
local.description.notes | Imported from ARIES | en_AU |
local.identifier.absfor | 010102 | en_AU |
local.identifier.absseo | 970101 | en_AU |
local.identifier.ariespublication | u5328909xPUB106 | en_AU |
local.identifier.citationvolume | 1 | en_AU |
local.identifier.doi | 10.14231/AG-2014-022 | en_AU |
local.identifier.uidSubmittedBy | u3488905 | en_AU |
local.publisher.url | http://www.ams.org/journals/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- 01_Alper_Adequate_Moduli_Spaces_2014.pdf
- Size:
- 558.78 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 884 B
- Format:
- Item-specific license agreed upon to submission
- Description: