Hierarchically Multiscale Vertically Oriented NiFeCo Nanoflakes for Efficient Electrochemical Oxygen Evolution at High Current Densities

Date

2024

Authors

Riaz, Asim
Fusco, Zelio
Kremer, Felipe
Gupta, Bikesh
Zhang, Doudou
Jagadish, Chennupati
Tan, Hoe
Karuturi, Siva

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley - VCH Verlag GmbH & CO. KGaA

Abstract

Crucial advancements in versatile catalyst systems capable of achieving high current densities under industrial conditions, bridging the gap between fundamental understanding and practical applications, are pivotal to propel the hydrogen economy forward. In this study, vertically oriented hierarchically multiscale nanoflakes of NiFeCo electrocatalysts are presented, developed by surface modification of a porous substrate with nano-structured nickel. The resulting electrodes achieve remarkably low overpotentials of 139 mV at 10 mAcm−2 and 248 mV at 500 mAcm−2. Further, scaled-up electrodes are implemented in a water-splitting electrolyser device exhibiting a stable voltage of 1.82 V to deliver a constant current density of 500 mA cm−2 for over 17 days. Moreover, the role of the unique structures on electrochemical activity is systematically investigated by fractal analysis, involving computation of structure factors such as Minkowski connectivity, fractal dimension, and porosity using scanning electron microscope images. It is found that such structures offer higher surface area than typical layered double hydroxide structures due to morphological coherence that results in a superhydrophilic surface, while the base Ni layer boosts the charge transfer. This study demonstrates a Ni/NiFeCo(OH)x heterostructure with highly porous morphology, a key to unlocking extremely efficient oxygen evolution reaction activity with exceptional stability. Moreover, fractal analysis is presented as a valuable tool to evaluate the electrochemical performance of catalysts for their structured morphology.

Description

Keywords

Citation

Source

Advanced Energy Materials

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons Attribution licence

Restricted until

Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906