Mathematical System Theory: Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday

dc.contributor.authorHuper, Knut
dc.contributor.authorTrumpf, Jochen
dc.contributor.editorKnut Hüper
dc.contributor.editorJochen Trumpf
dc.date.accessioned2015-12-07T22:54:08Z
dc.date.issued2013
dc.date.updated2015-12-07T12:46:41Z
dc.description.abstractThe problem of computing a p-dimensional invariant subspace of a symmetric positive-definite matrix pencil of dimension n is interpreted as computing a zero of a tangent vector field on the Grassmann manifold of p-planes in Rn. The theory of Newton’s method on manifolds is applied to this problem, and the resulting Newton equations are interpreted as block versions of the Jacobi–Davidson correction equation for the generalized eigenvalue problem.en_AU
dc.format.extent508 pages
dc.identifier.isbn9781470044008
dc.identifier.urihttp://hdl.handle.net/1885/28039
dc.publisherCreateSpace
dc.relation.isversionof1 Edition
dc.source.urihttps://www.semanticscholar.org/paper/Mathematical-System-Theory-Festschrift-in-Honor-of-H%C3%BCper-Trumpf/214cbefb58d9800661b2a8bdc70426d6c66cd714
dc.titleMathematical System Theory: Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday
dc.typeBook
dcterms.accessRightsOpen Access via publisher websiteen_AU
local.bibliographicCitation.placeofpublicationGermany
local.contributor.affiliationHuper, Knut, University of Wurzburg
local.contributor.affiliationTrumpf, Jochen, College of Engineering and Computer Science, ANU
local.contributor.authoruidTrumpf, Jochen, u4056317
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.identifier.absfor010203 - Calculus of Variations, Systems Theory and Control Theory
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
local.identifier.ariespublicationu4552802xPUB55
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Huper_Mathematical_System_Theory:_2013.pdf
Size:
7.87 MB
Format:
Adobe Portable Document Format