We are experiencing issues opening hdl.handle.net links on ANU campus. If you are experiencing issues, please contact the repository team repository.admin@anu.edu.au for assistance.
 

Understanding the impact of carrier mobility and mobile ions on perovskite cell performance

Date

2018-09-14

Authors

Wu, Nandi
Walter, Daniel
Fell, Andreas
Catchpole, Kylie
White, Timothy
Weber, Klaus

Journal Title

Journal ISSN

Volume Title

Publisher

SPIE - The International Society for Optical Engineering

Abstract

The realization of very high efficiency, stable perovskite solar cells fabricated on a large scale at low cost, has the potential to further lower the cost of photovoltaics. This necessitates an understanding of the properties required of the perovskite material, including the carrier mobility. Perovskite cells also feature mobile ionic species, and the impact of these ions on cell performance- A nd in particular, to what extent and under what circumstances they may limit device performance-is not well understood. Here, we employ an advanced numerical model that allows for the presence of mobile ionic species to probe the relationship between carrier mobility, the presence of ionic species as well as different possible recombination mechanisms within the cell. We show that a high electron and hole conductivity throughout the device is key to avoiding transport losses. For devices operating significantly below their radiative limit, achieving a sufficiently high conductivity requires high carrier mobilities of at least 10cm2/V-s. It is shown that the presence of a single mobile ionic species can lead to effective doping of the perovskite bulk, which is detrimental to cell performance by lowering the conductivity of one type of carrier. The results also indicate that increasing cell VOC closer to its radiative limit is also beneficial for reducing transport losses and pushing cell performance closer to its theoretical limit.

Description

Keywords

Perovskite, solar cell, modelling, ionic charge

Citation

Source

Proceedings of SPIE - The International Society for Optical Engineering

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until

Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906