We are experiencing issues opening hdl.handle.net links on ANU campus. If you are experiencing issues, please contact the repository team repository.admin@anu.edu.au for assistance.
 

Impact of Gettering and Hydrogenation on Sub-Band-Gap Luminescence from Ring Defects in Czochralski-Grown Silicon

Date

2021

Authors

Basnet, Rabin
Siriwardhana, Manjula
Nguyen, Hieu
Macdonald, Daniel

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Ring defects often occur in n-type Czochralski-grown silicon wafers during intermediate- to high-temperature annealing and become more recombination-active with increasing anneal durations. Such defects can significantly reduce the efficiency of solar cells. In this work, low-temperature photoluminescence (PL) spectra were measured from such ring defects, which emit a broad defect-related luminescence (DRL) peak centered at 0.9 eV. Quantitative comparisons of the DRL peak area between samples are generally not possible when using a constant laser power due to the significantly different carrier lifetimes, resulting in a different injection level and peak intensity. We show that this complication may be circumvented by varying the excitation laser power to achieve a constant band-band PL intensity from each sample, resulting in the same average injection level. The broad DRL peaks were then deconvoluted into three individual component peaks centered at 0.88, 0.93, and 1 eV. The impact of hydrogenation and phosphorus diffusion gettering steps was investigated on the individual components of the DRL peaks. Both hydrogenation and phosphorus diffusion gettering steps suppressed the broad DRL peak. However, the individual deconvoluted peaks were suppressed to different degrees. We observed that when the component peak from the deeper energy level (0.88 eV) is dominant, the ring defects can be completely passivated by hydrogenation. However, when the component peaks from the shallower energy levels (0.93 and 1 eV) dominate the DRL peak, hydrogenation is less effective for the passivation of ring defects.

Description

Keywords

sub-band-gap luminescence, oxygen precipitates, ring defects, hydrogenation, phosphorus diffusion gettering, photoluminescence, Czochralski silicon

Citation

Source

ACS Applied Energy Materials

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2099-12-31

Downloads

Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906