Selecting machine learning models for metallic nanoparticles

Date

2020

Authors

Barnard, Amanda
Opletal, George

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing

Abstract

The outcome of machine learning is influenced by the features used to describe the data, and various metrics are used to measure model performance. In this study we use five different feature sets to describe the same 4000 gold nanoparticles, and 14 different machine learning methods to compare a total of 70 high scoring models. We then use classification and regression to show which meta-features of data sets or machine learning algorithms are important when making a selection. We find that number of features, and those that are strongly correlated, determine the class of model that should be used, but overall quality is almost entirely determined by the cross-validation score, regardless of the sophistication of the algorithm.

Description

Keywords

machine learning, nanoparticle, gold, materials informatics, computational science

Citation

A.S. Barnard, G. Opletal, Nano Futures, 4 (2020) 035003.

Source

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until

2099-12-31