Quantum Hall effect and noncommutative geometry

dc.contributor.authorCarey, Alan
dc.contributor.authorHannabuss, Keith
dc.contributor.authorMathai, Varghese
dc.date.accessioned2015-12-08T22:45:04Z
dc.date.available2015-12-08T22:45:04Z
dc.date.issued2006
dc.date.updated2015-12-08T10:50:18Z
dc.description.abstractWe study magnetic Schrodinger operators with random or almost periodic electric potentials on the hyperbolic plane, motivated by the quantum Hall effect (QHE) in which the hyperbolic geometry provides an effective Hamiltonian. In addition we add some refinements to earlier results. We derive an analogue of the Connes-Kubo formula for the Hall conductance via the quantum adiabatic theorem, identifying it as a geometric invariant associated to an algebra of observables that turns out to be a crossed product algebra. We modify the Fredholm modules defined in [4] in order to prove the integrality of the Hall conductance in this case.
dc.identifier.issn1312-5192
dc.identifier.urihttp://hdl.handle.net/1885/37669
dc.publisherBulgarian Academy of Sciences
dc.sourceJournal of Geometry and Symmetry in Physics
dc.titleQuantum Hall effect and noncommutative geometry
dc.typeJournal article
local.bibliographicCitation.lastpage37
local.bibliographicCitation.startpage16
local.contributor.affiliationCarey, Alan, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationHannabuss, Keith, University of Oxford
local.contributor.affiliationMathai, Varghese, University of Adelaide
local.contributor.affiliationHannabuss, Keith, Balliol College
local.contributor.authoremailu4043636@anu.edu.au
local.contributor.authoruidCarey, Alan, u4043636
local.description.notesImported from ARIES
local.identifier.absfor010102 - Algebraic and Differential Geometry
local.identifier.ariespublicationu3169606xPUB152
local.identifier.citationvolume6
local.identifier.scopusID2-s2.0-84863105985
local.identifier.uidSubmittedByu3169606
local.type.statusPublished Version

Downloads