A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews

dc.contributor.authorMarrese-Taylor, Edison
dc.contributor.authorRodriguez Opazo, Cristian
dc.contributor.authorBalazs, Jorge A.
dc.contributor.authorGould, Stephen
dc.contributor.authorMatsuo, Yutaka
dc.contributor.editorJurafsky, Dan
dc.contributor.editorChai, Joyce
dc.contributor.editorSchluter, Natalie
dc.contributor.editorTetreault, Joel
dc.coverage.spatialOnline
dc.date.accessioned2023-07-20T05:18:57Z
dc.date.available2023-07-20T05:18:57Z
dc.date.createdJuly 5-10, 2020
dc.date.issued2017
dc.date.updated2022-05-22T08:15:56Z
dc.description.abstractDespite the recent advances in opinion mining for written reviews, few works have tackled the problem on other sources of reviews. In light of this issue, we propose a multi-modal approach for mining fine-grained opinions from video reviews that is able to determine the aspects of the item under review that are being discussed and the sentiment orientation towards them. Our approach works at the sentence level without the need for time annotations and uses features derived from the audio, video and language transcriptions of its contents. We evaluate our approach on two datasets and show that leveraging the video and audio modalities consistently provides increased performance over text-only baselines, providing evidence these extra modalities are key in better understanding video reviews.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn9781952148255en_AU
dc.identifier.urihttp://hdl.handle.net/1885/294459
dc.language.isoen_AUen_AU
dc.provenanceCreative Commons Attribution 4.0 International License. - from the publisher site - https://aclanthology.org/2020.challengehml-1.2/en_AU
dc.publisherAssociation for Computational Linguisticsen_AU
dc.relation.ispartofProceedings of the 58th Annual Meeting of the Association for Computational Linguisticsen_AU
dc.rights© 2017 Association for Computational Linguisticsen_AU
dc.rights.licenseCreative Commons Attribution 4.0 International License.en_AU
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_AU
dc.titleA Multi-modal Approach to Fine-grained Opinion Mining on Video Reviewsen_AU
dc.typeConference paperen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.lastpage18en_AU
local.bibliographicCitation.startpage8en_AU
local.contributor.affiliationMarrese-Taylor, Edison, University of Tokyoen_AU
local.contributor.affiliationRodriguez Opazo, Cristian, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationBalazs, Jorge A., The University of Tokyoen_AU
local.contributor.affiliationGould, Stephen, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationMatsuo, Yutaka, The University of Tokyoen_AU
local.contributor.authoremailu4971180@anu.edu.auen_AU
local.contributor.authoruidRodriguez Opazo, Cristian, u5419700en_AU
local.contributor.authoruidGould, Stephen, u4971180en_AU
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor460304 - Computer visionen_AU
local.identifier.absfor461103 - Deep learningen_AU
local.identifier.ariespublicationa383154xPUB18676en_AU
local.identifier.doi10.18653/v1/2020.challengehml-1.2en_AU
local.identifier.thomsonID000563409300002
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://aclanthology.org/2020.challengehml-1.2/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020.challengehml-1.2.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
Description: