A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews
dc.contributor.author | Marrese-Taylor, Edison | |
dc.contributor.author | Rodriguez Opazo, Cristian | |
dc.contributor.author | Balazs, Jorge A. | |
dc.contributor.author | Gould, Stephen | |
dc.contributor.author | Matsuo, Yutaka | |
dc.contributor.editor | Jurafsky, Dan | |
dc.contributor.editor | Chai, Joyce | |
dc.contributor.editor | Schluter, Natalie | |
dc.contributor.editor | Tetreault, Joel | |
dc.coverage.spatial | Online | |
dc.date.accessioned | 2023-07-20T05:18:57Z | |
dc.date.available | 2023-07-20T05:18:57Z | |
dc.date.created | July 5-10, 2020 | |
dc.date.issued | 2017 | |
dc.date.updated | 2022-05-22T08:15:56Z | |
dc.description.abstract | Despite the recent advances in opinion mining for written reviews, few works have tackled the problem on other sources of reviews. In light of this issue, we propose a multi-modal approach for mining fine-grained opinions from video reviews that is able to determine the aspects of the item under review that are being discussed and the sentiment orientation towards them. Our approach works at the sentence level without the need for time annotations and uses features derived from the audio, video and language transcriptions of its contents. We evaluate our approach on two datasets and show that leveraging the video and audio modalities consistently provides increased performance over text-only baselines, providing evidence these extra modalities are key in better understanding video reviews. | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.isbn | 9781952148255 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/294459 | |
dc.language.iso | en_AU | en_AU |
dc.provenance | Creative Commons Attribution 4.0 International License. - from the publisher site - https://aclanthology.org/2020.challengehml-1.2/ | en_AU |
dc.publisher | Association for Computational Linguistics | en_AU |
dc.relation.ispartof | Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics | en_AU |
dc.rights | © 2017 Association for Computational Linguistics | en_AU |
dc.rights.license | Creative Commons Attribution 4.0 International License. | en_AU |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_AU |
dc.title | A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews | en_AU |
dc.type | Conference paper | en_AU |
dcterms.accessRights | Open Access | en_AU |
local.bibliographicCitation.lastpage | 18 | en_AU |
local.bibliographicCitation.startpage | 8 | en_AU |
local.contributor.affiliation | Marrese-Taylor, Edison, University of Tokyo | en_AU |
local.contributor.affiliation | Rodriguez Opazo, Cristian, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Balazs, Jorge A., The University of Tokyo | en_AU |
local.contributor.affiliation | Gould, Stephen, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Matsuo, Yutaka, The University of Tokyo | en_AU |
local.contributor.authoremail | u4971180@anu.edu.au | en_AU |
local.contributor.authoruid | Rodriguez Opazo, Cristian, u5419700 | en_AU |
local.contributor.authoruid | Gould, Stephen, u4971180 | en_AU |
local.description.notes | Imported from ARIES | en_AU |
local.description.refereed | Yes | |
local.identifier.absfor | 460304 - Computer vision | en_AU |
local.identifier.absfor | 461103 - Deep learning | en_AU |
local.identifier.ariespublication | a383154xPUB18676 | en_AU |
local.identifier.doi | 10.18653/v1/2020.challengehml-1.2 | en_AU |
local.identifier.thomsonID | 000563409300002 | |
local.identifier.uidSubmittedBy | a383154 | en_AU |
local.publisher.url | https://aclanthology.org/2020.challengehml-1.2/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2020.challengehml-1.2.pdf
- Size:
- 1.5 MB
- Format:
- Adobe Portable Document Format
- Description: