Data-driven global weather predictions at high resolutions
Date
2021
Authors
Taylor, John
Rozas-Larraondo, Pablo
de Supinski, Bronis R
Journal Title
Journal ISSN
Volume Title
Publisher
SAGE Publications
Abstract
Society has benefited enormously from the continuous advancement in numerical weather prediction that has occurred over many decades driven by a combination of outstanding scientific, computational and technological breakthroughs. Here, we demonstrate that data-driven methods are now positioned to contribute to the next wave of major advances in atmospheric science. We show that data-driven models can predict important meteorological quantities of interest to society such as global high resolution precipitation fields (0.25 degrees) and can deliver accurate forecasts of the future state of the atmosphere without prior knowledge of the laws of physics and chemistry. We also show how these data-driven methods can be scaled to run on supercomputers with up to 1024 modern graphics processing units and beyond resulting in rapid training of data-driven models, thus supporting a cycle of rapid research and innovation. Taken together, these two results illustrate the significant potential of data-driven methods to advance atmospheric science and operational weather forecasting.
Description
Keywords
Weather prediction, data-driven modelling, deep neural networks, Unet, scalable neural networks
Citation
Collections
Source
International Journal of High Performance Computing Applications
Type
Journal article
Book Title
Entity type
Access Statement
License Rights
Restricted until
2099-12-31