Semi-Supervised Speech Enhancement Combining Nonnegative Matrix Factorization and Robust Principal Component Analysis

dc.contributor.authorHu, Yonggang
dc.contributor.authorXiongwei, Zhang
dc.contributor.authorZou, Xia
dc.contributor.authorSun, Meng
dc.contributor.authorZheng, Yunfei
dc.contributor.authorGang, Min
dc.date.accessioned2024-05-15T23:23:26Z
dc.date.issued2017
dc.date.updated2023-01-15T07:17:52Z
dc.description.abstractNonnegative matrix factorization (NMF) is one of the most popular machine learning tools for speech enhancement. The supervised NMF-based speech enhancement is accomplished by updating iteratively with the prior knowledge of the clean speech and noise spectra bases. However, in many real-world scenarios, it is not always possible for conducting any prior training. The traditional semi-supervised NMF (SNMF) version overcomes this shortcoming while the performance degrades. In this letter, without any prior knowledge of the speech and noise, we present an improved semi-supervised NMF-based speech enhancement algorithm combining techniques of NMF and robust principal component analysis (RPCA). In this approach, fixed speech bases are obtained from the training samples chosen from public dateset offline. The noise samples used for noise bases training, instead of characterizing a priori as usual, can be obtained via RPCA algorithm on the fly. This letter also conducts a study on the assumption whether the time length of the estimated noise samples may have an effect on the performance of the algorithm. Three metrics, including PESQ, SDR and SNR are applied to evaluate the performance of the algorithms by making experiments on TIMIT with 20 noise types at various signal-to-noise ratio levels. Extensive experimental results demonstrate the superiority of the proposed algorithm over the competing speech enhancement algorithm.en_AU
dc.description.sponsorshipThis work is partially supported by NSF of China (Grant No.61471394,61402519)and NSF of JIANG Su Province (GrantNo.BK2012510,BK20140071,BK20140074).en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0916-8508en_AU
dc.identifier.urihttp://hdl.handle.net/1885/317534
dc.language.isoen_AUen_AU
dc.publisherJ-STAGEen_AU
dc.rights© 2017 The Institute of Electronics, Information and Communication Engineersen_AU
dc.sourceIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciencesen_AU
dc.titleSemi-Supervised Speech Enhancement Combining Nonnegative Matrix Factorization and Robust Principal Component Analysisen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue8en_AU
local.bibliographicCitation.lastpage1719en_AU
local.bibliographicCitation.startpage1714en_AU
local.contributor.affiliationHu, Yonggang, College of Engineering, Computing and Cybernetics, ANUen_AU
local.contributor.affiliationXiongwei, Zhang, PLA University of Science and Technologyen_AU
local.contributor.affiliationZou, Xia, The Army Engineering University of PLAen_AU
local.contributor.affiliationSun, Meng, PLA University of Science and Technologyen_AU
local.contributor.affiliationZheng, Yunfei, PLA University of Science and Technologyen_AU
local.contributor.affiliationGang, Min, XI’AN Communications Instituteen_AU
local.contributor.authoremailrepository.admin@anu.edu.auen_AU
local.contributor.authoruidHu, Yonggang, u6014346en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor400607 - Signal processingen_AU
local.identifier.absfor460302 - Audio processingen_AU
local.identifier.ariespublicationu4485658xPUB785en_AU
local.identifier.citationvolumeE100Aen_AU
local.identifier.doi10.1587/transfun.E100.A.1714en_AU
local.identifier.scopusID2-s2.0-85026627051
local.identifier.thomsonIDWOS:000406923700011
local.identifier.uidSubmittedByu4485658en_AU
local.publisher.urlhttps://www.jstage.jst.go.jp/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Semi-Supervised Speech Enhancement Combining Nonnegative.pdf
Size:
470.6 KB
Format:
Adobe Portable Document Format
Description: