Boosting Thermoelectric Performance of 2D Transition-Metal Dichalcogenides by Complex Cluster Substitution: The Role of Octahedral Au<inf>6</inf>Clusters

dc.contributor.authorWang, Ning
dc.contributor.authorGong, Hengfeng
dc.contributor.authorSun, Zhehao
dc.contributor.authorShen, Chen
dc.contributor.authorLi, Bingke
dc.contributor.authorXiao, Haiyan
dc.contributor.authorZu, Xiaotao
dc.contributor.authorTang, Dawei
dc.contributor.authorYin, Zongyou
dc.contributor.authorWu, Xiaoqiang
dc.contributor.authorZhang, Hongbin
dc.contributor.authorQiao, Liang
dc.date.accessioned2024-03-19T05:06:00Z
dc.date.issued2021
dc.date.updated2022-11-13T07:17:23Z
dc.description.abstractThe concept of element substitution was introduced with the discovery of classic semiconductors in the early 1930s. While it has been demonstrated as an effective strategy to tune the physical properties of related materials over many decades, it is physically limited to the atomic size mismatch between the dopant and the host. From another perspective, if a complex cluster can be chemically introduced into a system with a similar structure, it can be regarded as the equivalent cluster version of substitution. Complex atomic configurations usually offer more tortuous phonon paths and stronger phonon anharmonicity; however, the phenomenon of complex cluster substitution is generally less studied compared with the traditional element substitution. In this work, we take the first step using density functional theory (DFT) calculations to learn the electrical and thermal transport properties of a 1T phase transition-metal dichalcogenide (TMD) monolayer incorporated with octahedral Au6 clusters, i.e., T-Au6S2. It is found that complex cluster substitution leads to a higher phonon scattering frequency and ultralow lattice thermal conductivity (0.167 and 0.171 W/mK at 700 K along the x axis and y axis). Besides, the introduction of Au6 clusters can effectively optimize the electronic structures, balance the relationship between the Seebeck coefficient and the electrical conductivity, and thus improve the power factor. Consequently, T-Au6S2 exhibits a high thermoelectric figure of merit ZT of 3.75 (3.79) at 700 K along the x axis (y axis). Our work demonstrates that complex cluster substitution is a promising route to improve the TE conversion efficiency for low-dimensional semiconductors.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn2574-0962en_AU
dc.identifier.urihttp://hdl.handle.net/1885/316125
dc.language.isoen_AUen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.rights© 2021 The authorsen_AU
dc.sourceACS Applied Energy Materialsen_AU
dc.subjectcomplex cluster substitutionen_AU
dc.subjecttwo-dimensional T-Au6S2en_AU
dc.subjectthermoelectricityen_AU
dc.subjecttransport propertyen_AU
dc.subjectfirst-principles calculationsen_AU
dc.titleBoosting Thermoelectric Performance of 2D Transition-Metal Dichalcogenides by Complex Cluster Substitution: The Role of Octahedral Au<inf>6</inf>Clustersen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue11en_AU
local.bibliographicCitation.lastpage12176en_AU
local.bibliographicCitation.startpage12163en_AU
local.contributor.affiliationWang, Ning, University of Electronic Science and Technology of Chinaen_AU
local.contributor.affiliationGong, Hengfeng, China Nuclear Power Technology Research Institute Company, Limiteden_AU
local.contributor.affiliationSun, Zhehao, College of Science, ANUen_AU
local.contributor.affiliationShen, Chen, Technical University of Darmstadten_AU
local.contributor.affiliationLi, Bingke , University of Electronic Science and Technology of Chinaen_AU
local.contributor.affiliationXiao, Haiyan, University of Electronic Science and Technology of Chinaen_AU
local.contributor.affiliationZu, Xiaotao, University of Electronic Science and Technology of Chinaen_AU
local.contributor.affiliationTang, Dawei, Dalian University of Technologyen_AU
local.contributor.affiliationYin, Zongyou, College of Science, ANUen_AU
local.contributor.affiliationWu, Xiaoqiang , Chengdu Universityen_AU
local.contributor.affiliationZhang, Hongbin, Technical University of Darmstadten_AU
local.contributor.affiliationQiao, Liang, University of Electronic Science and Technology of Chinaen_AU
local.contributor.authoremailu1035740@anu.edu.auen_AU
local.contributor.authoruidSun, Zhehao, u7094319en_AU
local.contributor.authoruidYin, Zongyou, u1035740en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor340305 - Physical properties of materialsen_AU
local.identifier.absfor401603 - Compound semiconductorsen_AU
local.identifier.absfor340301 - Inorganic materials (incl. nanomaterials)en_AU
local.identifier.ariespublicationa383154xPUB23520en_AU
local.identifier.citationvolume4en_AU
local.identifier.doi10.1021/acsaem.1c01777en_AU
local.identifier.scopusID2-s2.0-85118600817
local.identifier.thomsonID000734173900002
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://pubs.acs.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
wang-et-al-2021-boosting-thermoelectric-performance-of-2d-transition-metal-dichalcogenides-by-complex-cluster.pdf
Size:
5 MB
Format:
Adobe Portable Document Format
Description:
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906