Fine-scale drivers of beetle diversity are affected by vegetation context and agricultural history
Date
2017
Authors
Ross, Catherine
Barton, Philip
McIntyre, Sue
Cunningham, Saul
Manning, Adrian
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Abstract
Environmental gradients have been shown to affect animal diversity, but knowledge of fine-scale drivers of insect diversity is, in many cases, poorly developed. We investigated the drivers of beetle diversity and composition at different microhabitats, and how this may be mediated by past agricultural activities. The study was undertaken in temperate eucalypt grassy woodland near Canberra, south-eastern Australia, with a 200-year history of pastoral land use. We sampled beetles using pitfall traps at three microhabitats (open grassland, logs
and under trees). We analysed the effects of soil properties, vegetation structure, and plant composition on beetle composition, and compared beetle responses among the microhabitats. We found that microhabitat was a
strong determinant of the way beetle communities responded to their environment. Soil nutrients (C, N and P) were the strongest drivers of beetle species richness, abundance and composition at open and log microhabitat,
however vegetation structure (tree basal area) was more important for beetle richness, abundance and biomass under trees. We also found significant differences in beetle composition among distinct ground-layer plant communities at log and tree microhabitat. We show that prior agricultural land use, particularly fertilization, has altered soil and plant communities, and that these effects continue to flow through the system affecting beetle
assemblages. These findings have implications for future management of microhabitat structures in temperate grassy woodlands with a history of agricultural use.
Description
Keywords
Citation
Collections
Source
Austral Ecology
Type
Journal article
Book Title
Entity type
Access Statement
License Rights
Restricted until
2099-12-31
Downloads
File
Description