Accelerating ion and charge transfer of hybrid titanium niobium oxides through interface engineering for high-performance lithium ion capacitors
Date
2024
Authors
Yu, Cuiping
Xia, Chenhong
Wang, Yan
Zhang, Jianfang
Cai, Rui
Cui, Jiewu
Tan, Hoe
Zhang, Yong
Lv, Jun
Wu, Yucheng
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier BV
Abstract
Titanium niobium oxides have garnered significant attention as potential anode materials for lithium ion capacitors (LICs) due to their open ionic channels and high safety. However, the sluggish ion and charge transfer kinetics impede their rate capability. Hereby, we have investigated the phases evolution process of titanium niobium oxides by simple optimizing Nb/Ti ratio in the precursor, leading to the successful construction of hybrid TiO2/TiNb2O7 with active interface. Density functional theory (DFT) calculations manifest the low Li+-diffusion barrier and the formation of built-in electric fields, resulting in the accelerated interfacial charge separation/transfer and Li+ diffusion. In-situ XRD results reveal the highly reversible structural changes of TiO2/TiNb2O7 during charging/discharging process. Accordingly, hybrid TiO2/TiNb2O7 demonstrates much reinforced rate capability, which could retain a specific capacity of 205.1 mAh g−1 at high current density of 10 A g−1 compared to 300.3 mAh g−1 at 0.1 A g−1. Moreover, the assembled TiO2/TiNb2O7//AC LIC displays high energy density of 149.6 W h kg−1 (at 200 W kg−1). Overall, this work emphasizes the critical role of interface engineering in promoting ion and charge transfer of nanomaterials for superior energy storage and beyond.
Description
Keywords
Lithium ion capacitors, Titanium niobium oxides, Interface engineering, Built-in electric fields, Rate capability
Citation
Collections
Source
Journal of Energy Storage
Type
Journal article
Book Title
Entity type
Access Statement
License Rights
Restricted until
2099-12-31
Downloads
File
Description