Non-wetting droplets in capillaries of circular cross-section: Scaling function

Date

2019

Authors

Makuch, Karol
Gorce, Jean-Baptiste
Garstecki, Piotr

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics

Abstract

Steady motion of long, non-wetting droplets carried by a surrounding liquid in a circular capillary has been the subject of many experimental, theoretical, and numerical simulation studies. Theoretical approaches, even after the application of lubrication approximation in hydrodynamic equations and after neglecting inertia and gravity effects, still lead to a numerical procedure to determine the speed of a droplet or the thickness of the film between a droplet and the wall of the capillary. Here, we develop the lubrication approximation further to introduce an analytical formula for the speed of droplets as a function of the capillary number and of the ratio of the viscosity coefficients of the two immiscible phases. We achieve this by identification of a scaling function within the lubrication approximation. The equations that we propose here corroborate well with the results of numerical simulations of droplet flow in circular capillaries.

Description

Keywords

Citation

Source

Physics of Fluids

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until

Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906