High-resolution Cd isotope systematics in multiple zones of the Southern Ocean from the Antarctic Circumnavigation Expedition

Date

2019

Authors

Sieber, M.
Conway, Tim.M
de Souza, Gregory F.
Hassler, Christel S
Ellwood, Michael
Vance, Derek

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

The Southern Ocean plays a major role in determining the global distribution of trace metals such as cadmium (Cd). Here, we present 17 high-depth-resolution profiles of dissolved Cd and its stable isotope composition (Cd) over the top 1000 m of the Pacific and Atlantic sectors of the Southern Ocean, collected during the Antarctic Circumnavigation Expedition. Our dataset reinforces the view that Cd and its isotopes are dominated by shallow biological cycling in this region. A close examination of variations in Cd cycling across the different zones of the Southern Ocean reveals how the interplay between uptake and regeneration, seasonal mixing, and upwelling controls both Cd and Cd in this region. The only deviations from these systematics are due to the influence of local processes such as continental influence or Fe-fertilization, close to the Mertz Glacier and the Balleny Islands, respectively. Deep convection during winter incorporates the Southern Ocean Cd isotope signatures into Subantarctic Mode Water and Antarctic Intermediate Water during water mass formation. Incorporating published data, we present the first complete picture of how Cd is cycled through the entire Pacific Ocean, revealing the manner in which the Southern Ocean controls the global cycling of Cd and Cd; analogous to Si or Zn, we propose that Southern Ocean processes, in combination with global ocean circulation, cause a division into two separate Cd regimes, a Cd-depleted surface ocean above a Cd-rich deep ocean loop. Therefore, the relationship between Cd and PO4 on a global scale is largely a result of these processes in the Southern Ocean, rather than a local correlation between the two elements.

Description

Keywords

Citation

Source

Earth and Planetary Science Letters

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906