Low phase noise squeezed vacuum for future generation gravitational wave detectors

dc.contributor.authorKijbunchoo, Nutsinee
dc.contributor.authorMcRae, Terry
dc.contributor.authorSigg, D
dc.contributor.authorDwyer, S
dc.contributor.authorBarsotti, L
dc.contributor.authorBlair, C. D.
dc.contributor.authorEffler, A.
dc.contributor.authorEvans, M
dc.contributor.authorFernandez-Galiana, A.
dc.contributor.authorFrolov, V
dc.contributor.authorMatichard, F
dc.contributor.authorMavalvala, Nergis
dc.contributor.authorMullavey, Adam
dc.contributor.authorSlagmolen, Bram
dc.contributor.authorTse, M
dc.contributor.authorWhittle, C
dc.contributor.authorMcClelland, David
dc.date.accessioned2022-02-16T01:19:53Z
dc.date.issued2020
dc.date.updated2020-12-13T07:27:28Z
dc.description.abstractSqueezed light has become a standard technique to enhance the sensitivity of gravitational wave detectors. Both optical losses and phase noise in the squeezed path can degrade the achievable improvements. Phase noise can be mitigated by having a high bandwidth servo to stabilize the squeezer phase to the light from the interferometer. In advanced LIGO, this control loop bandwidth is limited by the 4 km arm cavity free spectral range to about ~15 kHz. Future generation gravitational-wave detectors are designed to employ much longer arm cavities. For cosmic explorer, a 40 km arm length will limit the bandwidth to ~1.5 kHz. We propose an alternative controls scheme that will increase the overall phase noise suppression by using the in-vacuum filter cavity as a reference for stabilizing the laser frequency of the squeezed light source. This will allow for rms phase noise of less than a milliradian - a negligible level for all future generations of gravitational-wave detectors.en_AU
dc.description.sponsorshipLIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation, and operates under Cooperative Agreement No. PHY-0757058. Advanced LIGO was built under Grant No. PHY-0823459. The authors also gratefully acknowledge the support of the Australian Research Council under the ARC Center of Excellence for Gravitational Wave Discovery, Grant No. CE170100004 and Linkage Infrastructure, Equipment and Facilities Grant No. LE170100217; the National Science Foundation Graduate Research Fellowship under Grant No. 1122374; and the LIGO Scientific Collaboration Fellows program. This document has been assigned the LIGO Laboratory document number LIGO-P2000064.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0264-9381en_AU
dc.identifier.urihttp://hdl.handle.net/1885/261193
dc.language.isoen_AUen_AU
dc.publisherInstitute of Physics Publishingen_AU
dc.relationhttp://purl.org/au-research/grants/arc/CE170100004en_AU
dc.relationhttp://purl.org/au-research/grants/arc/LE170100217en_AU
dc.rights© 2020 IOP Publishing Ltden_AU
dc.sourceClassical and Quantum Gravityen_AU
dc.subjectLIGOen_AU
dc.subjectsqueezed lighten_AU
dc.subjectgravitational waveen_AU
dc.subjectinterferometryen_AU
dc.titleLow phase noise squeezed vacuum for future generation gravitational wave detectorsen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue18en_AU
local.bibliographicCitation.lastpage185014-13en_AU
local.bibliographicCitation.startpage185014-1en_AU
local.contributor.affiliationKijbunchoo, Nutsinee, College of Science, ANUen_AU
local.contributor.affiliationMcRae, Terry, College of Science, ANUen_AU
local.contributor.affiliationSigg, D, LIGO Hanford Observatoryen_AU
local.contributor.affiliationDwyer, S, LIGO Hanford Observatoryen_AU
local.contributor.affiliationBarsotti, L, Massachusetts Institute of Technologyen_AU
local.contributor.affiliationBlair, C. D., LIGO Livingston Observatoryen_AU
local.contributor.affiliationEffler, A., LIGO Livingston Observatoryen_AU
local.contributor.affiliationEvans, M, Massachusetts Institute of Technologyen_AU
local.contributor.affiliationFernandez-Galiana, A., Massachusetts Institute of Technologyen_AU
local.contributor.affiliationFrolov, V, LIGO Livingston Observatoryen_AU
local.contributor.affiliationMatichard, F, LIGO—Massachusetts Institute of Technologyen_AU
local.contributor.affiliationMavalvala, Nergis , Massachusetts Institute of Technologyen_AU
local.contributor.affiliationMullavey, Adam, Louisiana State Universityen_AU
local.contributor.affiliationSlagmolen, Bram, College of Science, ANUen_AU
local.contributor.affiliationTse, M, LIGO—Massachusetts Institute of Technologyen_AU
local.contributor.affiliationWhittle, C, Massachusetts Institute of Technologyen_AU
local.contributor.affiliationMcClelland, David, College of Science, ANUen_AU
local.contributor.authoremailu1008768@anu.edu.auen_AU
local.contributor.authoruidKijbunchoo, Nutsinee, u6400927en_AU
local.contributor.authoruidMcRae, Terry, u1008768en_AU
local.contributor.authoruidSlagmolen, Bram, u9905035en_AU
local.contributor.authoruidMcClelland, David, u8802403en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor020105 - General Relativity and Gravitational Wavesen_AU
local.identifier.absfor020102 - Astronomical and Space Instrumentationen_AU
local.identifier.absfor020604 - Quantum Opticsen_AU
local.identifier.absseo970102 - Expanding Knowledge in the Physical Sciencesen_AU
local.identifier.ariespublicationU4474173xPUB59en_AU
local.identifier.citationvolume37en_AU
local.identifier.doi10.1088/1361-6382/aba4bben_AU
local.identifier.uidSubmittedByU4474173en_AU
local.publisher.urlhttp://iopscience.iop.org/0264-9381en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Kijbunchoo_Low_phase_noise_squeezed_2020.pdf
Size:
4.01 MB
Format:
Adobe Portable Document Format