Metabolomics analysis of postphotosynthetic effectsof gaseous O2 on primary metabolism in illuminated leaves

Date

2017

Authors

Abadie, Cyril
Blanchet, Sophie
Carroll, Adam
Tcherkez, Guillaume

Journal Title

Journal ISSN

Volume Title

Publisher

CSIRO Publishing

Abstract

The response of underground plant tissues to O2 limitation is currently an important topic in crop plants since adverse environmental conditions (e.g. waterlogging) may cause root hypoxia and thus compromise plant growth. However, little is known on the effect of low O2 conditions in leaves, probably because O2 limitation is improbable in these tissues under natural conditions, unless under complete submersion. Nevertheless, an O2-depleted atmosphere is commonly used in gas exchange experiments to suppress photorespiration and estimate gross photosynthesis. However, the nonphotosynthetic effects of gaseous O2 depletion, particularly on respiratory metabolism, are not well documented. Here, we used metabolomics obtained under contrasting O2 and CO2 conditions to examine the specific effect of a changing O2 mole fraction from ambient (21%) to 0%, 2% or 100%. In addition to the typical decrease in photorespiratory intermediates (glycolate, glycine and serine) and a build-up in photosynthates (sucrose), low O2 (0% or 2%) was found to trigger an accumulation of alanine and change succinate metabolism. In 100% O2, the synthesis of threonine and methionine from aspartate appeared to be stimulated. These responses were observed in two species, sunflower (Helianthus annuus L.) and Arabidopsis thaliana (L.) Heynh. Our results show that O2 causes a change in the oxygenation : carboxylation ratio and also alters postphotosynthetic metabolism: (i) a hypoxic response at low O2 mole fractions and (ii) a stimulation of S metabolism at high O2 mole fractions. The latter effect is an important piece of information to better understand how photorespiration may control S assimilation.

Description

Keywords

methionine, mitochondrial respiration, oxygen deficiency, photosynthesis

Citation

Source

Functional Plant Biology

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2099-12-31