COH-fluid induced metasomatism of peridotites in the forearc mantle

Date

2022

Authors

Sieber, Melanie Jutta
Yaxley, Greg
Hermann, Jörg

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

Devolatilization of subducting lithologies liberates COH-fluids. These may become partially sequestered in peridotites in the slab and the overlying forearc mantle, affecting the cycling of volatiles and fluid mobile elements in subduction zones. Here we assess the magnitudes, timescales and mechanism of channelized injection of COH-fluids doped with Ca2+aq, Sr2+aq and Ba2+aq into the dry forearc mantle by performing piston cylinder experiments between 1–2.5 GPa and 600–700 °C. Cylindrical cores of natural spinel-bearing harzburgites were used as starting materials. Based on mineral assemblage and composition three reaction zones are distinguishable from the rim towards the core of primary olivine and orthopyroxene grains. Zone 1 contains carbonates + quartz ± kyanite and zone 2 contains carbonates + talc ± chlorite. Olivine is further replaced in zone 3 by either antigorite + magnesite or magnesite + talc within or above antigorite stability, respectively. Orthopyroxene is replaced in zone 3 by talc + chlorite. Mineral assemblages and the compositions of secondary minerals depend on fluid composition and the replaced primary silicate. The extent of alteration depends on fluid CO2 content and fluid/rock-ratio, and is further promoted by fluid permeable reaction zones and reaction driven cracking. Our results show that COH-fluid induced metasomatism of the forearc mantle is self-perpetuating and efficient at sequestering Ca2+aq, Sr2+aq, Ba2+aq and CO2aq into newly formed carbonates. This process is fast with 90% of the available C sequestered and nearly 50% of the initial minerals altered at 650 °C, 2 GPa within 55 h. The dissolution of primary silicates under high COH-fluid/rock-ratios, as in channelized fluid flow, enriches SiO2aq in the fluid, while CO2aq is sequestered into carbonates. In an open system, the remaining CO2-depleted, Si-enriched aqueous fluid may cause Si-metasomatism in the forearc further away from the injection of the COH-fluid into peridotite.

Description

Keywords

Carbonation, Deep carbon cycle, COH-fuid, Forearc, HP-experiments

Citation

Source

Contributions to Mineralogy and Petrology

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons Attribution 4.0 International License

Restricted until