Magnetic configuration effects on the Wendelstein 7-X stellarator : Publisher Correction

dc.contributor.authorDinklage, Andreas
dc.contributor.authorBeidler, C
dc.contributor.authorHelander, Per
dc.contributor.authorFuchert, Golo
dc.contributor.authorMaaßberg, H.
dc.contributor.authorRahbarnia, Kian
dc.contributor.authorPedersen, Thomas Sunn
dc.contributor.authorTurkin, Yu A
dc.contributor.authorWolf, Robert
dc.contributor.authorAlonso, A
dc.contributor.authorBlackwell, Boyd
dc.date.accessioned2020-06-16T23:11:16Z
dc.date.issued2018
dc.date.updated2020-01-19T07:22:09Z
dc.description.abstractThe two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τE > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures.en_AU
dc.description.sponsorshipThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014– 2018 under grant agreement 633053.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1745-2473en_AU
dc.identifier.urihttp://hdl.handle.net/1885/205200
dc.language.isoen_AUen_AU
dc.publisherNature Publishing Groupen_AU
dc.rights© 2018 Nature Publishingen_AU
dc.sourceNature Physicsen_AU
dc.titleMagnetic configuration effects on the Wendelstein 7-X stellarator : Publisher Correctionen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.lastpage860en_AU
local.bibliographicCitation.startpage855en_AU
local.contributor.affiliationDinklage, Andreas, Max Planck Institute for Plasma Physicsen_AU
local.contributor.affiliationBeidler, C, Max Planck Institute for Plasma Physicsen_AU
local.contributor.affiliationHelander, Per, Max Planck Institut fur Plasmaphysiken_AU
local.contributor.affiliationFuchert, Golo, Max Planck Institut fur Plasmaphysiken_AU
local.contributor.affiliationMaaßberg, H., Max-Planck Institut für Plasmaphysiken_AU
local.contributor.affiliationRahbarnia, Kian, Max-Planck-Institut für Plasmaphysiken_AU
local.contributor.affiliationPedersen, Thomas Sunn, Max Planck Institut fur Plasmaphysiken_AU
local.contributor.affiliationTurkin, Yu A, Max Planck Institute for Plasma Physicsen_AU
local.contributor.affiliationWolf, Robert, Max Planck Institut fuer Plasmaphysiken_AU
local.contributor.affiliationAlonso, A, CIEMATen_AU
local.contributor.affiliationBlackwell, Boyd, College of Science, ANUen_AU
local.contributor.authoremailu8508956@anu.edu.auen_AU
local.contributor.authoruidBlackwell, Boyd, u8508956en_AU
local.description.embargo2037-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor020204 - Plasma Physics; Fusion Plasmas; Electrical Dischargesen_AU
local.identifier.absfor091299 - Materials Engineering not elsewhere classifieden_AU
local.identifier.absseo859899 - Environmentally Sustainable Energy Activities not elsewhere classifieden_AU
local.identifier.absseo970102 - Expanding Knowledge in the Physical Sciencesen_AU
local.identifier.absseo850403 - Nuclear Energyen_AU
local.identifier.ariespublicationa383154xPUB10060en_AU
local.identifier.citationvolume14en_AU
local.identifier.doi10.1038/s41567-018-0141-9en_AU
local.identifier.scopusID2-s2.0-85047206432
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://www.nature.com/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Dinklage_Publisher_Correction%3A_Magnetic_2018.pdf
Size:
4.01 MB
Format:
Adobe Portable Document Format