Erythrocyte β spectrin can be genetically targeted to protect mice from malaria

dc.contributor.authorLelliott, Patrick
dc.contributor.authorHuang, Hong Ming
dc.contributor.authorDixon, Matthew W. A.
dc.contributor.authorNamwar, Arman
dc.contributor.authorBlanch, Adam. J
dc.contributor.authorRajagopal, Vijay
dc.contributor.authorTilley, Leann
dc.contributor.authorCoban, Cevavyir
dc.contributor.authorMcMorran, Brendan
dc.contributor.authorFoote, Simon
dc.contributor.authorBurgio, Gaetan
dc.date.accessioned2019-07-25T01:26:21Z
dc.date.available2019-07-25T01:26:21Z
dc.date.issued2018
dc.date.updated2019-03-31T07:21:41Z
dc.description.abstractThe malaria parasite hijacks host erythrocytes to shield itself from the immune system and proliferate. Red blood cell abnormalities can provide protection from malaria by impeding parasite invasion and growth within the cell or by compromising the ability of parasites to avoid host clearance. Here, we describe 2 N-ethyl-N-nitrosourea–induced mouse lines, SptbMRI26194 and SptbMRI53426, containing single-point mutations in the erythrocyte membrane skeleton gene, b spectrin (Sptb), which exhibit microcytosis but retain a relatively normal ratio of erythrocyte surface area to volume and are highly resistant to rodent malaria. We propose the major factor responsible for malaria protection is the specific clearance of mutant erythrocytes, although an enhanced clearance of ninfected mutant erythrocytes was also observed (ie, the bystander effect). Using an in vivo erythrocyte tracking assay, we established that this phenomenon occurs irrespective of host environment, precluding the involvement of nonerythrocytic cells in the resistance mechanism. Furthermore, we recapitulated this phenotype by disrupting the interaction between ankyrin-1 and b spectrin in vivo using CRISPR/Cas9 genome editing technology, thereby genetically validating a potential antimalarial target. This study sheds new light on the role of b spectrin during Plasmodium infection and highlights how changes in the erythrocyte cytoskeleton can substantially influence malaria susceptibility with minimal adverse consequences for the host.en_AU
dc.description.sponsorshipThis work was supported by the National Health and Medical Research Council (grants APP605524 , 4 90037 and 104 7082), the Australian Research Council (grants DP12010061 and FL150100106), the National Collaborative Research Infrastructure Strategy of Australia and the education investment fund from the Department of Innovation, Industry, Science and Research via the Australian Phenomics Network, and the Japan Society for the Promotion of Science Fellowship Program (grant S16706).en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn2473-9537en_AU
dc.identifier.urihttp://hdl.handle.net/1885/164701
dc.language.isoen_AUen_AU
dc.provenancehttp://sherpa.ac.uk/romeo/issn/2473-9529/..."author can archive publisher's version/PDF" from SHERPA/RoMEO site (as at 25/07/19).en_AU
dc.publisherAmerican Society of Hematologyen_AU
dc.relationhttp://purl.org/au-research/grants/nhmrc/605524en_AU
dc.relationhttp://purl.org/au-research/grants/nhmrc/490037en_AU
dc.relationhttp://purl.org/au-research/grants/nhmrc/1047082en_AU
dc.relationhttp://purl.org/au-research/grants/arc/FL150100106en_AU
dc.rights© 2017 by The American Society of Hematologyen_AU
dc.sourceBlood Advancesen_AU
dc.titleErythrocyte β spectrin can be genetically targeted to protect mice from malariaen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.issue26en_AU
local.bibliographicCitation.lastpage2636en_AU
local.bibliographicCitation.startpage2624en_AU
local.contributor.affiliationLelliott, Patrick, College of Health and Medicine, ANUen_AU
local.contributor.affiliationHuang, Hong (Ming), College of Health and Medicine, ANUen_AU
local.contributor.affiliationDixon, Matthew W. A., Bio21 Instituteen_AU
local.contributor.affiliationNamwar, Arman, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, and Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia;en_AU
local.contributor.affiliationBlanch, Adam. J, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, and Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia;en_AU
local.contributor.affiliationRajagopal, Vijay, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australiaen_AU
local.contributor.affiliationTilley, Leann, Bio21 Instituteen_AU
local.contributor.affiliationCoban, Cevavyir, Osaka Universityen_AU
local.contributor.affiliationMcMorran, Brendan, College of Health and Medicine, ANUen_AU
local.contributor.affiliationFoote, Simon, College of Health and Medicine, ANUen_AU
local.contributor.affiliationBurgio, Gaetan, College of Health and Medicine, ANUen_AU
local.contributor.authoremailu5717222@anu.edu.auen_AU
local.contributor.authoruidLelliott, Patrick, u1001991en_AU
local.contributor.authoruidHuang, Hong (Ming), u5717222en_AU
local.contributor.authoruidMcMorran, Brendan, u5267721en_AU
local.contributor.authoruidFoote, Simon, u5697711en_AU
local.contributor.authoruidBurgio, Gaetan, u5727247en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor060599 - Microbiology not elsewhere classifieden_AU
local.identifier.absfor060499 - Genetics not elsewhere classifieden_AU
local.identifier.ariespublicationu4368888xPUB1en_AU
local.identifier.citationvolume1en_AU
local.identifier.doi10.1182/bloodadvances.2017009274en_AU
local.identifier.uidSubmittedByu4368888en_AU
local.publisher.urlhttps://www.hematology.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Lelliott_Erythrocyte_%CE%B2_spectrin_can_be_2018.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format