Effects of mesophyll conductance on vegetation responses to elevated CO 2 concentrations in a land surface model

dc.contributor.authorKnauer, Jürgen
dc.contributor.authorZaehle, S.
dc.contributor.authorDe Kauwe, Martin G.
dc.contributor.authorAbdul Bahar, Nur
dc.contributor.authorEvans, John
dc.contributor.authorMedlyn, Belinda E.
dc.contributor.authorReichstein, M.
dc.contributor.authorWerner, Christiane
dc.date.accessioned2019-12-17T04:54:25Z
dc.date.available2019-12-17T04:54:25Z
dc.date.issued2019-02-26
dc.date.updated2019-07-28T08:21:06Z
dc.description.abstractMesophyll conductance (gm) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large‐scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functional types (PFTs) are expected to cause spatially divergent vegetation responses to elevated CO2 concentrations. Here, an extensive literature compilation of gm across major vegetation types is used to parameterize an empirical model of gm in the LSM JSBACH and to adjust photosynthetic parameters based on simulated An − Ci curves. We demonstrate that an explicit representation of gm changes the response of photosynthesis to environmental factors, which cannot be entirely compensated by adjusting photosynthetic parameters. These altered responses lead to changes in the photosynthetic sensitivity to atmospheric CO2 concentrations which depend both on the magnitude of gm and the climatic conditions, particularly temperature. We then conducted simulations under ambient and elevated (ambient + 200 μmol/mol) CO2 concentrations for contrasting ecosystems and for historical and anticipated future climate conditions (representative concentration pathways; RCPs) globally. The gm‐explicit simulations using the RCP8.5 scenario resulted in significantly higher increases in gross primary productivity (GPP) in high latitudes (+10% to + 25%), intermediate increases in temperate regions (+5% to + 15%), and slightly lower to moderately higher responses in tropical regions (−2% to +5%), which summed up to moderate GPP increases globally. Similar patterns were found for transpiration, but with a lower magnitude. Our results suggest that the effect of an explicit representation of gm is most important for simulated carbon and water fluxes in the boreal zone, where a cold climate coincides with evergreen vegetation.en_AU
dc.description.sponsorshipSZ was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 647204; QUINCY). MDK acknowledges support from the Australian Research Council Centre of Excellence for Climate Extremes (CE170100023).en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1354-1013en_AU
dc.identifier.urihttp://hdl.handle.net/1885/195677
dc.language.isoen_AUen_AU
dc.provenanceThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_AU
dc.publisherBlackwell Publishing Ltden_AU
dc.relationhttp://purl.org/au-research/grants/arc/CE170100023en_AU
dc.rights© 2019 The Authors Global Change Biologyen_AU
dc.rights.licenseCreative Commons Attribution Licenseen_AU
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_AU
dc.sourceGlobal Change Biologyen_AU
dc.subjectelevated CO2 concentrationsen_AU
dc.subjectland surface modelingen_AU
dc.subjectmesophyll conductanceen_AU
dc.subjectphotosynthetic CO2 sensitivityen_AU
dc.subjectrepresentative concentration pathwaysen_AU
dc.titleEffects of mesophyll conductance on vegetation responses to elevated CO 2 concentrations in a land surface modelen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
dcterms.dateAccepted2019-01-26
local.bibliographicCitation.issue5en_AU
local.bibliographicCitation.lastpage1838en_AU
local.bibliographicCitation.startpage1820en_AU
local.contributor.affiliationKnauer, Jürgen, Max Planck Institute for Biogeochemistryen_AU
local.contributor.affiliationZaehle, S., Max-Planck-Institut fur Biogeochemieen_AU
local.contributor.affiliationDe Kauwe, Martin G., University of New South Walesen_AU
local.contributor.affiliationAbdul Bahar, Nur, College of Science, ANUen_AU
local.contributor.affiliationEvans, John, College of Science, ANUen_AU
local.contributor.affiliationMedlyn , Belinda E., Western Sydney Universityen_AU
local.contributor.affiliationReichstein, M., Max Planck Institute for Biogeochemistryen_AU
local.contributor.affiliationWerner, Christiane, University of Freiburgen_AU
local.contributor.authoremailu4512707@anu.edu.auen_AU
local.contributor.authoruidAbdul Bahar, Nur, u4512707en_AU
local.contributor.authoruidEvans, John, u8802050en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor060705 - Plant Physiologyen_AU
local.identifier.absseo970106 - Expanding Knowledge in the Biological Sciencesen_AU
local.identifier.ariespublicationu5786633xPUB802en_AU
local.identifier.citationvolume25en_AU
local.identifier.doi10.1111/gcb.14604en_AU
local.identifier.scopusID2-s2.0-85063273581
local.identifier.uidSubmittedByu5786633en_AU
local.publisher.urlhttps://onlinelibrary.wiley.comen_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Knauer_Effects_of_mesophyll_2019.pdf
Size:
7.75 MB
Format:
Adobe Portable Document Format