Nonlinear Imaging with All-Dielectric Metasurfaces

Date

2020

Authors

Schlickriede, Christian
Kruk, Sergey
Wang, Lei
Sain, Basudeb
Kivshar, Yuri
Zentgraf, Thomas

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Nonlinear metasurfaces incorporate many of the functionalities of their linear counterparts such as wavefront shaping, but simultaneously they perform nonlinear optical transformations. This dual functionality leads to a rather unintuitive physical behavior which is still widely unexplored for many photonic applications. The nonlinear processes render some basic principles governing the functionality of linear metasurfaces. Exemplarily, the superposition principle and the geometric optics approximation become not directly applicable to nonlinear metasurfaces. On the other hand, nonlinear metasurfaces facilitate new phenomena that are not possible in the linear regime. Here, we study the imaging of objects through a dielectric nonlinear metalens. We illuminate objects by infrared light and record their generated images at the visible third-harmonic wavelengths. We revisit the classical lens theory and suggest a generalized Gaussian lens equation for nonlinear imaging, verified both experimentally and analytically. We also demonstrate experimentally higher-order spatial correlations facilitated by the nonlinear metalens, resulting in additional image features.

Description

Keywords

Metalens, dielectric metasurface, nonlinear imaging, third-harmonic generation, nonlinear Huygens’ principle

Citation

Source

Nano Letters

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons

Restricted until

Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906