Evolution of Social Power in Social Networks with Dynamic Topology

dc.contributor.authorYe, Mengbin
dc.contributor.authorLiu, Ji
dc.contributor.authorAnderson, Brian
dc.contributor.authorYu, Changbin(Brad)
dc.contributor.authorBasar, Tamer
dc.date.accessioned2023-08-28T01:26:56Z
dc.date.issued2018
dc.date.updated2022-07-24T08:20:19Z
dc.description.abstractThe recently proposed DeGroot-Friedkin model describes the dynamical evolution of individual social power in a social network that holds opinion discussions on a sequence of different issues. This paper revisits that model, and uses nonlinear contraction analysis, among other tools, to establish several novel results. First, we show that for a social network with constant topology, each individual's social power converges to its equilibrium value exponentially fast, whereas previous results only concluded asymptotic convergence. Second, when the network topology is dynamic (i.e., the relative interaction matrix may change between any two successive issues), we show that each individual exponentially forgets its initial social power. Specifically, individual social power is dependent only on the dynamic network topology, and initial (or perceived) social power is forgotten as a result of sequential opinion discussion. Last, we provide an explicit upper bound on an individual's social power as the number of issues discussed tends to infinity; this bound depends only on the network topology. Simulations are provided to illustrate our results.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0018-9286en_AU
dc.identifier.urihttp://hdl.handle.net/1885/296904
dc.language.isoen_AUen_AU
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE Inc)en_AU
dc.rights© 2018 The authorsen_AU
dc.sourceIEEE Transactions on Automatic Controlen_AU
dc.subjectDiscrete-timeen_AU
dc.subjectdynamic topologyen_AU
dc.subjectnonlinear contraction analysisen_AU
dc.subjectopinion dynamicsen_AU
dc.subjectsocial networksen_AU
dc.subjectsocial poweren_AU
dc.titleEvolution of Social Power in Social Networks with Dynamic Topologyen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue11en_AU
local.bibliographicCitation.lastpage3808en_AU
local.bibliographicCitation.startpage3793en_AU
local.contributor.affiliationYe, Ben, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationLiu, Ji, Electrical and Computer Engineeringen_AU
local.contributor.affiliationAnderson, Brian, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationYu, Brad, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationBasar, Tamer, University of Illinoisen_AU
local.contributor.authoremailu8104642@anu.edu.auen_AU
local.contributor.authoruidYe, Ben, u5327541en_AU
local.contributor.authoruidAnderson, Brian, u8104642en_AU
local.contributor.authoruidYu, Brad, u4168516en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor490105 - Dynamical systems in applicationsen_AU
local.identifier.absfor490103 - Calculus of variations, mathematical aspects of systems theory and control theoryen_AU
local.identifier.ariespublicationa383154xPUB9402en_AU
local.identifier.citationvolume63en_AU
local.identifier.doi10.1109/TAC.2018.2805261en_AU
local.identifier.scopusID2-s2.0-85041823402
local.identifier.thomsonIDWOS:000448499500013
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://ieeexplore.ieee.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Evolution_of_Social_Power_in_Social_Networks_With_Dynamic_Topology.pdf
Size:
677.41 KB
Format:
Adobe Portable Document Format
Description: