Unidirectional Representation-Based Efficient Dictionary Learning

dc.contributor.authorWang, Xiudong
dc.contributor.authorLi, Yali
dc.contributor.authorYou, Shaodi
dc.contributor.authorli, hongdong
dc.contributor.authorWang, Shengjin
dc.date.accessioned2023-11-21T22:58:52Z
dc.date.issued2020
dc.date.updated2022-09-04T08:18:06Z
dc.description.abstractDictionary learning (DL) has been widely studied for pattern classification. Most existing methods introduce multiple discriminative terms into objective functions for accuracy improvement, leading to complex learning frameworks and high computational burdens. This paper proposes a simple yet effective DL algorithm for classification, namely unidirectional representation dictionary learning (URDL). Unidirectional constraint is proposed to guide coefficient directions in the representation to be discriminative. Besides, direction-thresholding is proposed to exploit the direction property in the classification scheme. It suppresses the disturbance from undesired non-zero coefficients, and improves the representation discriminability. We adopt squared \ell _{2} -norm-based regularization for efficient coding, and systematically analyze the mechanism of the proposed method. Extensive experiments on five data sets are conducted, including object categorization, scene classification, face recognition, and fine-grained flower classification. The experimental results demonstrate that the proposed approach not only outperforms the state-of-the-art DL algorithms in terms of recognition accuracy significantly, but also exhibits a much higher computational efficiency.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1051-8215en_AU
dc.identifier.urihttp://hdl.handle.net/1885/307344
dc.language.isoen_AUen_AU
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE Inc)en_AU
dc.rights© 2018 The authorsen_AU
dc.sourceIEEE Transactions on Circuits and Systems for Video Technologyen_AU
dc.subjectEfficient dictionary learningen_AU
dc.subjectunidirectional representationen_AU
dc.subjectdirection-thresholdingen_AU
dc.subjectimage classificationen_AU
dc.titleUnidirectional Representation-Based Efficient Dictionary Learningen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue1en_AU
local.bibliographicCitation.lastpage74en_AU
local.bibliographicCitation.startpage59en_AU
local.contributor.affiliationWang, Xiudong, Tsinghua Universityen_AU
local.contributor.affiliationLi, Yali, Tsinghua Universityen_AU
local.contributor.affiliationYou, Shaodi, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationLi, Hongdong, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationWang, Shengjin, Tsinghua Universityen_AU
local.contributor.authoremailu1018276@anu.edu.auen_AU
local.contributor.authoruidYou, Shaodi, u1018276en_AU
local.contributor.authoruidLi, Hongdong, u4056952en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor460306 - Image processingen_AU
local.identifier.absfor461199 - Machine learning not elsewhere classifieden_AU
local.identifier.ariespublicationu6269649xPUB865en_AU
local.identifier.citationvolume30en_AU
local.identifier.doi10.1109/TCSVT.2018.2886600en_AU
local.identifier.scopusID2-s2.0-85058669029
local.identifier.thomsonIDWOS:000521641800006
local.identifier.uidSubmittedByu6269649en_AU
local.publisher.urlhttps://ieeexplore.ieee.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Unidirectional_Representation-Based_Efficient_Dictionary_Learning.pdf
Size:
5.83 MB
Format:
Adobe Portable Document Format
Description: