Delay-Intolerant Covert Communications with Either Fixed or Random Transmit Power
dc.contributor.author | Yan, Shihao | |
dc.contributor.author | He, Biao | |
dc.contributor.author | Zhou, Xiangyun | |
dc.contributor.author | Cong, Yirui | |
dc.contributor.author | Swindlehurst, Arnold Lee | |
dc.date.accessioned | 2020-01-14T03:15:36Z | |
dc.date.issued | 2018-06-11 | |
dc.date.updated | 2019-11-25T07:19:51Z | |
dc.description.abstract | In this paper, we study delay-intolerant covert communications in additive white Gaussian noise (AWGN) channels with a finite block length, i.e., a finite number of channel uses. Considering the maximum allowable number of channel uses to be N, it is not immediately clear whether the actual number of channel uses, denoted by n, should be as large as N or smaller for covert communications. This is because a smaller n reduces a warden’s chance to detect the communications due to fewer observations, but also reduces the chance to transmit information. We show that n=N is indeed optimal to maximize the amount of information bits that can be transmitted, subject to any covert communication constraint in terms of the warden’s detection error probability. To better make use of the warden’s uncertainty due to the finite block length, we also propose to use uniformly distributed random transmit power to enhance covert communications. Our examination shows that the amount of information that can be covertly transmitted logarithmically increases with the number of random power levels, which indicates that most of the benefit of using random transmit power is achieved with just a few different power levels. | |
dc.description.sponsorship | This work was supported by the Australian Research Council’s Discovery Projects under Grant DP180104062. | |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.issn | 1556-6013 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/197192 | |
dc.language.iso | en_AU | en_AU |
dc.provenance | http://v2.sherpa.ac.uk/id/publication/3478..."Author can archive accepted manuscript in any repository" from SHERPA/RoMEO site (as at 14.4.20) | |
dc.publisher | Institute of Electrical and Electronics Engineers | en_AU |
dc.relation | http://purl.org/au-research/grants/arc/DP180104062 | |
dc.rights | © 2018 IEEE | en_AU |
dc.source | IEEE Transactions on Information Forensics and Security | en_AU |
dc.title | Delay-Intolerant Covert Communications with Either Fixed or Random Transmit Power | en_AU |
dc.type | Journal article | en_AU |
dcterms.accessRights | Open Access | |
local.bibliographicCitation.issue | 1 | en_AU |
local.bibliographicCitation.lastpage | 140 | en_AU |
local.bibliographicCitation.startpage | 129 | en_AU |
local.contributor.affiliation | Yan, Shihao, Macquarie University | en_AU |
local.contributor.affiliation | He, Biao, Center for Pervasive Communications and Computing | en_AU |
local.contributor.affiliation | Zhou, Xiangyun (Sean), College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Cong, Yirui, College of Intelligence Science and Technology | en_AU |
local.contributor.affiliation | Swindlehurst, Arnold Lee, University of California, Irvine | en_AU |
local.contributor.authoremail | u2586105@anu.edu.au | en_AU |
local.contributor.authoruid | Zhou, Xiangyun (Sean), u2586105 | en_AU |
local.description.notes | Imported from ARIES | |
local.identifier.absfor | 100510 - Wireless Communications | en_AU |
local.identifier.absfor | 090609 - Signal Processing | en_AU |
local.identifier.absseo | 970109 - Expanding Knowledge in Engineering | en_AU |
local.identifier.absseo | 890103 - Mobile Data Networks and Services | en_AU |
local.identifier.ariespublication | a383154xPUB10165 | en_AU |
local.identifier.citationvolume | 14 | en_AU |
local.identifier.doi | 10.1109/TIFS.2018.2846257 | en_AU |
local.identifier.scopusID | 2-s2.0-85048474237 | |
local.identifier.uidSubmittedBy | a383154 | en_AU |
local.publisher.url | https://www.ieee.org/ | en_AU |
local.type.status | Accepted Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- finalized_manuscript_ANU.pdf
- Size:
- 454.76 KB
- Format:
- Adobe Portable Document Format