Open Research will be unavailable from 8am to 8.30am on Monday 21st July 2025 due to scheduled maintenance. This maintenance is to provide bug fixes and performance improvements. During this time, you may experience a short outage and be unable to use Open Research.
 

Dating ancient wood by high-sensitivity liquid scintillation counting and accelerator mass spectrometry - Pushing the boundaries

Date

Authors

Hogg, Alan G
Fifield, L Keith
Turney, Christian
Palmer, Jonathan G
Galbraith, Rex
Baillie, Mike G K

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

It is critical that a comprehensive terrestrial radiocarbon (14C) calibration curve is developed beyond 26 ka for high-precision calibration and correlation of climatic, environmental and archaeological records. Abundant sub-fossil New Zealand kauri (Agathis australis) wood, preserved in Oxygen Isotope Stage-2 and 3 peat swamps, provides an important resource for 14C calibration; nowhere else in the world does such an extensive collection of ancient wood exist. Although finite 14C ages beyond 50 ka are becoming routinely reported, few attempts have been made to demonstrate their accuracy or precision. Finite ages beyond 50 ka require optimization of all elements involved in sample preparation and 14C analysis. Here we discuss the methodology employed for optimizing the 14C dating of near-background wood samples by both benzene synthesis for liquid scintillation counting (LSC) or graphite synthesis for accelerator mass spectrometry (AMS). We report the mean background blank activities for both methods and present a statistical model for assigning blank standard errors when blank activity variation is over and above counting statistics. We also present duplicate analyses (using LSC and AMS) of nine successive samples of wood obtained from a sub-fossil kauri log near-background in age to investigate the significance of the measured blank levels and variability.

Description

Citation

Source

Quaternary Geochronology

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31