Boundary blow-up in nonlinear elliptic equations of Bieberbach--Rademacher type

dc.contributor.authorCîrstea, Florica-Corina
dc.contributor.authorRădulescu, Vicenţiu
dc.date.accessioned2016-03-15T22:37:57Z
dc.date.available2016-03-15T22:37:57Z
dc.date.issued2007-02-13
dc.date.updated2016-06-14T08:38:45Z
dc.description.abstractWe establish the uniqueness of the positive solution for equations of the form −∆u = au − b(x)f(u) in Ω, u|∂Ω = ∞. The special feature is to consider nonlinearities f whose variation at infinity is not regular (e.g., exp(u) − 1, sinh(u), cosh(u) − 1, exp(u) log(u + 1), uᵝ exp(uᵞ), β ∈ R, γ > 0 or exp(exp(u)) − e) and functions b ≥ 0 in Ω vanishing on ∂Ω. The main innovation consists of using Karamata’s theory not only in the statement/proof of the main result but also to link the nonregular variation of f at infinity with the blow-up rate of the solution near ∂Ω.
dc.description.sponsorshipThe research of the first author was carried out at Victoria University (Melbourne) with the support of the Australian Government through DETYA. The second author has been supported by Grant 2-CEX06-11-18/2006.en_AU
dc.identifier.issn0002-9947en_AU
dc.identifier.urihttp://hdl.handle.net/1885/100254
dc.publisherAmerican Mathematical Society
dc.rights© 2007 American Mathematical Society
dc.sourceTransactions of the American Mathematical Society
dc.subjectLarge solutions
dc.subjectboundary blow-up
dc.subjectregular variation theory
dc.titleBoundary blow-up in nonlinear elliptic equations of Bieberbach--Rademacher type
dc.typeJournal article
local.bibliographicCitation.issue07en_AU
local.bibliographicCitation.lastpage3287en_AU
local.bibliographicCitation.startpage3275en_AU
local.contributor.affiliationCirstea, Florica-Corina, College of Physical and Mathematical Sciences, CPMS Mathematical Sciences Institute, Department of Mathematics, The Australian National Universityen_AU
local.contributor.affiliationRadulescu, Vicentiu, University of Craiova, Romaniaen_AU
local.contributor.authoremailFlorica.Cirstea@maths.anu.edu.auen_AU
local.contributor.authoruidu4237614en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor010108en_AU
local.identifier.ariespublicationu3169606xPUB105en_AU
local.identifier.citationvolume359en_AU
local.identifier.doi10.1090/S0002-9947-07-04107-4en_AU
local.identifier.scopusID2-s2.0-55049109969
local.identifier.uidSubmittedByu3488905en_AU
local.publisher.urlhttp://www.sherpa.ac.uk/romeo/issn/0002-9947/en_AU
local.type.statusPublished Versionen_AU

Downloads

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
884 B
Format:
Item-specific license agreed upon to submission
Description: