We are experiencing issues opening hdl.handle.net links on ANU campus. If you are experiencing issues, please contact the repository team repository.admin@anu.edu.au for assistance.
 

The MAGPI Survey: impact of environment on the total internal mass distribution of galaxies in the last 5 Gyr

Date

2023

Authors

Derkenne, Caro
McDermid, Richard M
Poci, Adriano
Mendel, Trevor
D'Eugenio, Francesco
Jeon, Seyoung
Remus, Rhea-Silvia
Bellstedt, S.
Battisti, Andrew
Bland-Hawthorn, Joss

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press

Abstract

We investigate the impact of environment on the internal mass distribution of galaxies using the Middle Ages Galaxy Properties with Integral field spectroscopy (MAGPI) survey. We use 2D resolved stellar kinematics to construct Jeans dynamical models for galaxies at mean redshift z ∼ 0.3, corresponding to a lookback time of 3–4 Gyr. The internal mass distribution for each galaxy is parametrized by the combined mass density slope γ (baryons + dark matter), which is the logarithmic change of density with radius. We use a MAGPI sample of 28 galaxies from low-to-mid density environments and compare to density slopes derived from galaxies in the high density Frontier Fields clusters in the redshift range 0.29 < z < 0.55, corresponding to a lookback time of ∼5 Gyr. We find a median density slope of γ = −2.22 ± 0.05 for the MAGPI sample, which is significantly steeper than the Frontier Fields median slope (γ = −2.00 ± 0.04), implying the cluster galaxies are less centrally concentrated in their mass distribution than MAGPI galaxies. We also compare to the distribution of density slopes from galaxies in ATLAS3D at z ∼ 0, because the sample probes a similar environmental range as MAGPI. The ATLAS3D median total slope is γ = −2.25 ± 0.02, consistent with the MAGPI median. Our results indicate environment plays a role in the internal mass distribution of galaxies, with no evolution of the slope in the last 3–4 Gyr. These results are in agreement with the predictions of cosmologicalsimulations.

Description

Keywords

galaxies: evolution, galaxies: kinematics and dynamics

Citation

Source

Monthly Notices of the Royal Astronomical Society

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until

Downloads

File
Description
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906